984 resultados para molybdenum 101
Resumo:
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass-dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first-order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and −0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s). Les isotopes du molybdène (Mo) sont de plus en plus largement utilisés dans les sciences de la Terre. Ils sont principalement utilisés pour étudier l'oxygénation de l'océan et de l'atmosphère de la Terre. Cependant, de plus en plus de domaines d'application sont en cours de développement, tels que ceux concernant les processus magmatiques et hydrothermaux, les sciences planétaires ou encore le suivi de la pollution environnementale. Ici, nous présentons une proposition de présentation unifiée des rapports isotopiques du Mo dans les études du fractionnement isotopique dépendant de la masse. Nous suggérons que le δ98/95Mo du NIST SRM 3134 soit définit comme étant égal à +0.25 ‰. La raison est que la grande majorité des données publiées sont présentés par rapport à des matériaux de référence qui sont similaires, mais pas identiques, et qui sont tous légèrement plus léger que le NIST SRM 3134. Notre proposition de présentation des données permet une comparaison directe au premier ordre de presque toutes les anciennes données avec les travaux futurs en se référant à un standard international. En particulier, les valeurs canoniques du δ98/95Mo comme celle de +2,3 ‰ pour l'eau de mer et de -0,7 ‰ pour les précipités de Fe-Mn marins peuvent être conservés pour la discussion. Comme les publications récentes montrent que la signature isotopique moyenne du molybdène de l'océan est homogène, le standard de l'eau océanique IAPSO ou tout autre échantillon d'eau provenant de l'océan ouvert sont proposé comme standards secondaires, avec une valeur définie du δ98/95 Mo de 2.34 ± 0.10 ‰ (2s).
Resumo:
The abundance of atmospheric oxygen and its evolution through Earth's history is a highly debated topic. The earliest change of the Mo concentration and isotope composition of marine sediments are interpreted to be linked to the onset of the accumulation of free O2 in Earth's atmosphere. The O2 concentration needed to dissolve significant amounts of Mo in water is not yet quantified, however. We present laboratory experiments on pulverized and surface-cleaned molybdenite (MoS2) and a hydrothermal breccia enriched in Mo-bearing sulphides using a glove box setup. Duration of an experiment was 14 days, and first signs of oxidation and subsequent dissolution of Mo compounds start to occur above an atmospheric oxygen concentration of 72 ± 20 ppmv (i.e., 2.6 to 4.6 × 10−4 present atmospheric level (PAL)). This experimentally determined value coincides with published model calculations supporting atmospheric O2 concentrations between 1 × 10−5 to 3 × 10−4 PAL prior to the Great Oxidation Event and sets an upper limit to the molecular oxygen needed to trigger Mo accumulation and Mo isotope variations recorded in sediments. In combination with the published Mo isotope composition of the rock record, this result implies an atmospheric oxygen concentration prior to 2.76 Ga of below 72 ± 20 ppmv.
Resumo:
In order to estimate the Mo isotope composition and Mo abundance in the Bulk Silicate Earth (BSE), a total of thirty komatiite samples from five localities on three continents were analyzed using an isotope dilution double spike technique. Calculated Mo concentrations of the emplaced komatiite lavas range from 25±325±3 to 66±22 ng/g66±22 ng/g, and the inferred Mo concentrations in the deep mantle sources of the komatiites range between 17±417±4 and 30±12 ng/g30±12 ng/g, with an average value of 23±7 ng/g23±7 ng/g (2SE). This average value represents our best estimate for the Mo concentration in the BSE; it is identical, within the uncertainty, to published previous estimates of 39±16 ng/g39±16 ng/g, but is at least a factor of 2 more precise. The Mo isotope compositions of the komatiite mantle sources overlap within uncertainty and range from View the MathML sourceδMo98=−0.04±0.28 to 0.11±0.10‰0.11±0.10‰, with an average of 0.04±0.06‰0.04±0.06‰ (2SE). This value is analytically indistinguishable from published Mo isotope compositions of ordinary and enstatite chondrites and represents the best estimate for the Mo isotope composition of the BSE. The inferred δ98Mo for the BSE is therefore lighter than the suggested average of the upper continental crust (0.3 to 0.4‰). Thus, from the mass balance standpoint, a reservoir with lighter Mo isotope composition should exist in the Earth's mantle; this reservoir can potentially be found in subducted oceanic crust. The similarity of δ98Mo between chondritic meteorites and estimates for the BSE from this study indicates that during the last major equilibration between Earth's core and mantle, i.e., the one that occurred during the giant impact that produced the Moon, chemical and isotopic equilibrium of Mo between Fe metal of the core and the silicate mantle was largely achieved.
Resumo:
Vorbesitzer: Abraham Merzbacher
Identification of adsorbed molecules via STM tip manipulation: CO, H₂O, and O₂ on TiO₂ anatase (101)
Resumo:
While Scanning Tunneling Microscopy (STM) has evolved as an ideal tool to study surface chemistry at the atomic scale, the identification of adsorbed species is often not straightforward. This paper describes a way to reliably identify H2O, CO and O2 on the TiO2 anatase (101) surface with STM. These molecules are of a key importance in the surface chemistry of this and many other (photo-) catalytic materials. They exhibit a wide variety of contrasts in STM images, depending on the tip condition. With clean, metallic tips the molecules appear very similar, i.e., as bright, dimer-like features located in the proximity of surface Ti5c atoms. However, each species exhibits a specific response to the electric field applied by the STM tip. It is shown that this tip–adsorbate interaction can be used to reliably ascertain the identity of such species. The tip–adsorbate interactions, together with comparison of experimental and calculated STM images, are used to analyse and revisit the assignments of molecular adsorbed species reported in recent studies.
Ab initio simulations of the structure of thin water layers on defective anatase TiO₂ (101) surfaces
Resumo:
Vorbesitzer: Leonhardstift Frankfurt am Main;