938 resultados para model of criteria systems
Resumo:
This paper presents a theoretical model of the torsional characteristics of parallel multi-part rope systems. In such systems, the ropes may cable, or wrap around each other, depending on the combination of applied torque, rope tension, length and spacing between the rope parts. Cabling constitutes a failure that might be retrievable but as such can seriously affect the performance of the rope system. The torsional characteristics of the system are very different before and after cabling, and theoretical models are given for both situations. Laboratory tests were performed on both two and four rope systems, with measurements being made of torque at rotations from 0 to 360 deg. Tests were run with different rope spacings, tensions and lengths and the results compared with predictions from the theoretical model. The conclusion from the test results was that the theoretical model predicts both the pre- and post-cabling torsional behaviour with an acceptable level of accuracy.
Resumo:
Purpose – The purpose of this research is to show that reliability analysis and its implementation will lead to an improved whole life performance of the building systems, and hence their life cycle costs (LCC). Design/methodology/approach – This paper analyses reliability impacts on the whole life cycle of building systems, and reviews the up-to-date approaches adopted in UK construction, based on questionnaires designed to investigate the use of reliability within the industry. Findings – Approaches to reliability design and maintainability design have been introduced from the operating environment level, system structural level and component level, and a scheduled maintenance logic tree is modified based on the model developed by Pride. Different stages of the whole life cycle of building services systems, reliability-associated factors should be considered to ensure the system's whole life performance. It is suggested that data analysis should be applied in reliability design, maintainability design, and maintenance policy development. Originality/value – The paper presents important factors in different stages of the whole life cycle of the systems, and reliability and maintainability design approaches which can be helpful for building services system designers. The survey from the questionnaires provides the designers with understanding of key impacting factors.
Resumo:
Neuropathic pain is a difficult state to treat, characterized by alterations in sensory processing that can include allodynia (touch-evoked pain). Evidence exists for nerve damage-induced plasticity in both transmission and modulatory systems, including changes in voltage-dependent calcium channel (VDCC) expression and function; however, the role of Ca(v)2.3 calcium channels has not clearly been defined. Here, the effects of SNX-482, a selective Ca(v)2.3 antagonist, on sensory transmission at the spinal cord level have been investigated in the rat. The spinal nerve ligation (SNL) model of chronic neuropathic pain [Kim & Chung, (1992) Pain, 50, 355-363] was used to induce mechanical allodynia, as tested on the ipsilateral hindpaw. In vivo electrophysiological measurements of dorsal horn neuronal responses to innocuous and noxious electrical and natural stimuli were made after SNL and compared to sham-operated animals. Spinal SNX-482 (0.5-4 mu g/50 mu L) exerted dose-related inhibitions of noxious C-fibre- and A delta-fibre-mediated neuronal responses in conditions of neuropathy, but not in sham-operated animals. Measures of spinal cord hyperexcitability and nociception were most susceptible to SNX-482. In contrast, non-noxious A beta-mediated responses were not affected by SNX-482. Moreover, responses to innocuous mechanical and also thermal stimuli were more sensitive to SNX-482 in SNL than control animals. This study is the first to demonstrate an antinociceptive role for SNX-482-sensitive channels in dorsal horn neurons during neuropathy. These data are consistent with plasticity in Ca(V)2.3 calcium channel expression and suggest a potential selective target to reduce nociceptive transmission during conditions of nerve damage.
Resumo:
Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.
Resumo:
The problem of identification of a nonlinear dynamic system is considered. A two-layer neural network is used for the solution of the problem. Systems disturbed with unmeasurable noise are considered, although it is known that the disturbance is a random piecewise polynomial process. Absorption polynomials and nonquadratic loss functions are used to reduce the effect of this disturbance on the estimates of the optimal memory of the neural-network model.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
An iterative procedure is described for solving nonlinear optimal control problems subject to differential algebraic equations. The procedure iterates on an integrated modified simplified model based problem with parameter updating in such a manner that the correct solution of the original nonlinear problem is achieved.
Resumo:
Classical measures of network connectivity are the number of disjoint paths between a pair of nodes and the size of a minimum cut. For standard graphs, these measures can be computed efficiently using network flow techniques. However, in the Internet on the level of autonomous systems (ASs), referred to as AS-level Internet, routing policies impose restrictions on the paths that traffic can take in the network. These restrictions can be captured by the valley-free path model, which assumes a special directed graph model in which edge types represent relationships between ASs. We consider the adaptation of the classical connectivity measures to the valley-free path model, where it is -hard to compute them. Our first main contribution consists of presenting algorithms for the computation of disjoint paths, and minimum cuts, in the valley-free path model. These algorithms are useful for ASs that want to evaluate different options for selecting upstream providers to improve the robustness of their connection to the Internet. Our second main contribution is an experimental evaluation of our algorithms on four types of directed graph models of the AS-level Internet produced by different inference algorithms. Most importantly, the evaluation shows that our algorithms are able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free path model in reasonable time. Furthermore, our experimental results provide information about the characteristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms yield topologies that are similar with respect to connectivity and are different with respect to the types of paths that exist between pairs of ASs.
Resumo:
Using a literature review, we argue that new models of peatland development are needed. Many existing models do not account for potentially important ecohydrological feedbacks, and/or ignore spatial structure and heterogeneity. Existing models, including those that simulate a near total loss of the northern peatland carbon store under a warming climate, may produce misleading results because they rely upon oversimplified representations of ecological and hydrological processes. In this, the first of a pair of papers, we present the conceptual framework for a model of peatland development, DigiBog, which considers peatlands as complex adaptive systems. DigiBog accounts for the interactions between the processes which govern litter production and peat decay, peat soil hydraulic properties, and peatland water-table behaviour, in a novel and genuinely ecohydrological manner. DigiBog consists of a number of interacting submodels, each representing a different aspect of peatland ecohydrology. Here we present in detail the mathematical and computational basis, as well as the implementation and testing, of the hydrological submodel. Remaining submodels are described and analysed in the accompanying paper. Tests of the hydrological submodel against analytical solutions for simple aquifers were highly successful: the greatest deviation between DigiBog and the analytical solutions was 2·83%. We also applied the hydrological submodel to irregularly shaped aquifers with heterogeneous hydraulic properties—situations for which no analytical solutions exist—and found the model's outputs to be plausible.
Resumo:
A new approach to the study of the local organization in amorphous polymer materials is presented. The method couples neutron diffraction experiments that explore the structure on the spatial scale 1–20 Å with the reverse Monte Carlo fitting procedure to predict structures that accurately represent the experimental scattering results over the whole momentum transfer range explored. Molecular mechanics and molecular dynamics techniques are also used to produce atomistic models independently from any experimental input, thereby providing a test of the viability of the reverse Monte Carlo method in generating realistic models for amorphous polymeric systems. An analysis of the obtained models in terms of single chain properties and of orientational correlations between chain segments is presented. We show the viability of the method with data from molten polyethylene. The analysis derives a model with average C-C and C-H bond lengths of 1.55 Å and 1.1 Å respectively, average backbone valence angle of 112, a torsional angle distribution characterized by a fraction of trans conformers of 0.67 and, finally, a weak interchain orientational correlation at around 4 Å.
Resumo:
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV