903 resultados para memory-based networks


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a resource-sharing scheme that supports three kinds of sharing scenarios in a WDM mesh network with path-based protection and sparse OEO regeneration. Several approaches are used to maximize the sharing of wavelength-links and OEO regenerators.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wavelength division multiplexing (WDM) offers a solution to the problem of exploiting the large bandwidth on optical links; it is the current favorite multiplexing technology for optical communication networks. Due to the high cost of an optical amplifier, it is desirable to strategically place the amplifiers throughout the network in a way that guarantees that all the signals are adequately amplified while minimizing the total number amplifiers being used. Previous studies all consider a star-based network. This paper demonstrates an original approach for solving the problem in switch-based WDM optical network assuming the traffic matrix is always the permutation of the nodes. First we formulate the problem by choosing typical permutations which can maximize traffic load on individual links; then a GA (Genetic Algorithm) is used to search for feasible amplifier placements. Finally, by setting up all the lightpaths without violating the power constaints we confirm the feasibility of the solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ACR is supported by a research grant from CNPq.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays, computing is migrating from traditional high performance and distributed computing to pervasive and utility computing based on heterogeneous networks and clients. The current trend suggests that future IT services will rely on distributed resources and on fast communication of heterogeneous contents. The success of this new range of services is directly linked to the effectiveness of the infrastructure in delivering them. The communication infrastructure will be the aggregation of different technologies even though the current trend suggests the emergence of single IP based transport service. Optical networking is a key technology to answer the increasing requests for dynamic bandwidth allocation and configure multiple topologies over the same physical layer infrastructure, optical networks today are still “far” from accessible from directly configure and offer network services and need to be enriched with more “user oriented” functionalities. However, current Control Plane architectures only facilitate efficient end-to-end connectivity provisioning and certainly cannot meet future network service requirements, e.g. the coordinated control of resources. The overall objective of this work is to provide the network with the improved usability and accessibility of the services provided by the Optical Network. More precisely, the definition of a service-oriented architecture is the enable technology to allow user applications to gain benefit of advanced services over an underlying dynamic optical layer. The definition of a service oriented networking architecture based on advanced optical network technologies facilitates users and applications access to abstracted levels of information regarding offered advanced network services. This thesis faces the problem to define a Service Oriented Architecture and its relevant building blocks, protocols and languages. In particular, this work has been focused on the use of the SIP protocol as a inter-layers signalling protocol which defines the Session Plane in conjunction with the Network Resource Description language. On the other hand, an advantage optical network must accommodate high data bandwidth with different granularities. Currently, two main technologies are emerging promoting the development of the future optical transport network, Optical Burst and Packet Switching. Both technologies respectively promise to provide all optical burst or packet switching instead of the current circuit switching. However, the electronic domain is still present in the scheduler forwarding and routing decision. Because of the high optics transmission frequency the burst or packet scheduler faces a difficult challenge, consequentially, high performance and time focused design of both memory and forwarding logic is need. This open issue has been faced in this thesis proposing an high efficiently implementation of burst and packet scheduler. The main novelty of the proposed implementation is that the scheduling problem has turned into simple calculation of a min/max function and the function complexity is almost independent of on the traffic conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays the rise of non-recurring engineering (NRE) costs associated with complexity is becoming a major factor in SoC design, limiting both scaling opportunities and the flexibility advantages offered by the integration of complex computational units. The introduction of embedded programmable elements can represent an appealing solution, able both to guarantee the desired flexibility and upgradabilty and to widen the SoC market. In particular embedded FPGA (eFPGA) cores can provide bit-level optimization for those applications which benefits from synthesis, paying on the other side in terms of performance penalties and area overhead with respect to standard cell ASIC implementations. In this scenario this thesis proposes a design methodology for a synthesizable programmable device designed to be embedded in a SoC. A soft-core embedded FPGA (eFPGA) is hence presented and analyzed in terms of the opportunities given by a fully synthesizable approach, following an implementation flow based on Standard-Cell methodology. A key point of the proposed eFPGA template is that it adopts a Multi-Stage Switching Network (MSSN) as the foundation of the programmable interconnects, since it can be efficiently synthesized and optimized through a standard cell based implementation flow, ensuring at the same time an intrinsic congestion-free network topology. The evaluation of the flexibility potentialities of the eFPGA has been performed using different technology libraries (STMicroelectronics CMOS 65nm and BCD9s 0.11μm) through a design space exploration in terms of area-speed-leakage tradeoffs, enabled by the full synthesizability of the template. Since the most relevant disadvantage of the adopted soft approach, compared to a hardcore, is represented by a performance overhead increase, the eFPGA analysis has been made targeting small area budgets. The generation of the configuration bitstream has been obtained thanks to the implementation of a custom CAD flow environment, and has allowed functional verification and performance evaluation through an application-aware analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L'obiettivo su cui è stata basata questa Tesi di Laurea è stato quello di integrare la tecnologia delle Wireless Sensor Networks (WSN) al contesto dell'Internet delle cose (IoT). Per poter raggiungere questo obiettivo, il primo passo è stato quello di approfondire il concetto dell'Internet delle cose, in modo tale da comprendere se effettivamente fosse stato possibile applicarlo anche alle WSNs. Quindi è stata analizzata l'architettura delle WSNs e successivamente è stata fatta una ricerca per capire quali fossero stati i vari tipi di sistemi operativi e protocolli di comunicazione supportati da queste reti. Infine sono state studiate alcune IoT software platforms. Il secondo passo è stato quindi di implementare uno stack software che abilitasse la comunicazione tra WSNs e una IoT platform. Come protocollo applicativo da utilizzare per la comunicazione con le WSNs è stato usato CoAP. Lo sviluppo di questo stack ha consentito di estendere la piattaforma SensibleThings e il linguaggio di programmazione utilizzato è stato Java. Come terzo passo è stata effettuata una ricerca per comprendere a quale scenario di applicazione reale, lo stack software progettato potesse essere applicato. Successivamente, al fine di testare il corretto funzionamento dello stack CoAP, è stata sviluppata una proof of concept application che simulasse un sistema per la rilevazione di incendi. Questo scenario era caratterizzato da due WSNs che inviavano la temperatura rilevata da sensori termici ad un terzo nodo che fungeva da control center, il cui compito era quello di capire se i valori ricevuti erano al di sopra di una certa soglia e quindi attivare un allarme. Infine, l'ultimo passo di questo lavoro di tesi è stato quello di valutare le performance del sistema sviluppato. I parametri usati per effettuare queste valutazioni sono stati: tempi di durata delle richieste CoAP, overhead introdotto dallo stack CoAP alla piattaforma Sensible Things e la scalabilità di un particolare componente dello stack. I risultati di questi test hanno mostrato che la soluzione sviluppata in questa tesi ha introdotto un overheadmolto limitato alla piattaforma preesistente e inoltre che non tutte le richieste hanno la stessa durata, in quanto essa dipende dal tipo della richiesta inviata verso una WSN. Tuttavia, le performance del sistema potrebbero essere ulteriormente migliorate, ad esempio sviluppando un algoritmo che consenta la gestione concorrente di richieste CoAP multiple inviate da uno stesso nodo. Inoltre, poichè in questo lavoro di tesi non è stato considerato il problema della sicurezza, una possibile estensione al lavoro svolto potrebbe essere quello di implementare delle politiche per una comunicazione sicura tra Sensible Things e le WSNs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Region-specific empirically based ground-truth (EBGT) criteria used to estimate the epicentral-location accuracy of seismic events have been developed for the Main Ethiopian Rift and the Tibetan plateau. Explosions recorded during the Ethiopia-Afar Geoscientific Lithospheric Experiment (EAGLE), the International Deep Profiling of Tibet, and the Himalaya (INDEPTH III) experiment provided the necessary GT0 reference events. In each case, the local crustal structure is well known and handpicked arrival times were available, facilitating the establishment of the location accuracy criteria through the stochastic forward modeling of arrival times for epicentral locations. In the vicinity of the Main Ethiopian Rift, a seismic event is required to be recorded on at least 8 stations within the local Pg/Pn crossover distance and to yield a network-quality metric of less than 0.43 in order to be classified as EBGT5(95%) (GT5 with 95% confidence). These criteria were subsequently used to identify 10 new GT5 events with magnitudes greater than 2.1 recorded on the Ethiopian Broadband Seismic Experiment (EBSE) network and 24 events with magnitudes greater than 2.4 recorded on the EAGLE broadband network. The criteria for the Tibetan plateau are similar to the Ethiopia criteria, yet slightly less restrictive as the network-quality metric needs to be less than 0.45. Twenty-seven seismic events with magnitudes greater than 2.5 recorded on the INDEPTH III network were identified as GT5 based on the derived criteria. When considered in conjunction with criteria developed previously for the Kaapvaal craton in southern Africa, it is apparent that increasing restrictions on the network-quality metric mirror increases in the complexity of geologic structure from craton to plateau to rift. Accession Number: WOS:000322569200012