972 resultados para melatonin 1 receptor
Resumo:
OBJECTIVES: The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB(1) receptor is predominantly expressed in neurons but is also co-expressed with the CB(2) receptor in peripheral tissues. In recent years, CB receptor ligands, including Delta(9)-tetrahydrocannabinol, have been proposed as potential anticancer agents. KEY FINDINGS: This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB(1) and CB(2) receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. SUMMARY: The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB(2)-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB(1) receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.
Resumo:
BACKGROUND Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1 (PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interaction have been developed. MATERIALS AND METHODS A tissue microarray (n=1491) including healthy colon mucosa and clinically annotated colorectal cancer (CRC) specimens was stained with two PD-L1 specific antibody preparations. Surgically excised CRC specimens were enzymatically digested and analysed for cluster of differentiation 8 (CD8) and PD-1 expression. RESULTS Strong PD-L1 expression was observed in 37% of mismatch repair (MMR)-proficient and in 29% of MMR-deficient CRC. In MMR-proficient CRC strong PD-L1 expression correlated with infiltration by CD8(+) lymphocytes (P=0.0001) which did not express PD-1. In univariate analysis, strong PD-L1 expression in MMR-proficient CRC was significantly associated with early T stage, absence of lymph node metastases, lower tumour grade, absence of vascular invasion and significantly improved survival in training (P=0.0001) and validation (P=0.03) sets. A similar trend (P=0.052) was also detectable in multivariate analysis including age, sex, T stage, N stage, tumour grade, vascular invasion, invasive margin and MMR status. Interestingly, programmed death receptor ligand 1 (PDL-1) and interferon (IFN)-γ gene expression, as detected by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in fresh frozen CRC specimens (n=42) were found to be significantly associated (r=0.33, P=0.03). CONCLUSION PD-L1 expression is paradoxically associated with improved survival in MMR-proficient CRC.
Resumo:
Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT(1) receptor agonistic autoantibodies (AT(1)-AAs) that contribute to the disease features. However, the exact role of AT(1)-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT(1) receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT(1)-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT(1)-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT(1)-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT(1)-AA-induced placental damage. Our findings highlight AT(1)-AAs as important therapeutic targets.
Resumo:
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% ± 2.2% and 17.0% ± 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.
Resumo:
BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.
Resumo:
Preeclampsia is a disease that affects 3–5% of all pregnancies. The cause is unknown and there is currently no treatment. The disease poses significant health risks to both the mother and the fetus. To date, research on the topic has not produced a convincing cause for the development of the hallmark symptoms of preeclampsia. The hypothesis of an agonistic autoimmune response to the AT1 receptor is presented. Immunoglobulin fractions from normotensive and preeclampsia patients were prepared for experimental tests. Model systems were tested in three categories to determine if AT 1 receptor specific activation and receptor-ligand interaction was caused by a suspected autoantibody. Activation was found in rat neonatal cardiornyocytes that caused an increased contraction rate. This activity was found in preeclampsia patients, absent in normotensive patients. The activation was antagonized by losartan, an AT1 receptor antagonist, and by epitope peptide competition of the receptor-ligand type interaction. This epitope was the 7 amino acid peptide fragment, AFHYESQ, a sequence present in the second extracellular loop of the AT1 receptor. The patterns of AT1 receptor activation were also found in a human trophoblast cell line, HTR8, with an effect on Pai-1 secretion, a factor that plays a role in preventing hypercoagulation. In human mesangial cells, the AT1 receptor autoantibody present in the immunoglobulin fraction from preeclampsia patients was found to stimulate the secretion of Pai-1, and IL-6, a factor that plays a role in the activation of an inflammatory response. This activity was found in samples from preeclampsia patients, but absent in normotensive patients. Tests including losartan, AFHYESQ, and a non-competitive peptide demonstrated that the secretion of Pai-1 and IL-6 met the criteria for AT1 receptor activation by the suspected agonistic autoantibody. These three model systems address relevant pathophysiology for preeclampsia patients, including increased cardiac output, abnormal placentation, and renal damage. The AT1 receptor agonistic autoantibody is potentially a key player in the development of the pathology and symptoms of preeclampsia. ^
Resumo:
Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.
Resumo:
It is widely accepted that interleukin-1β (IL-1β), a cytokine produced not only by immune cells but also by glial cells and certain neurons influences brain functions during infectious and inflammatory processes. It is still unclear, however, whether IL-1 production is triggered under nonpathological conditions during activation of a discrete neuronal population and whether this production has functional implications. Here, we show in vivo and in vitro that IL-1β gene expression is substantially increased during long-term potentiation of synaptic transmission, a process considered to underlie certain forms of learning and memory. The increase in gene expression was long lasting, specific to potentiation, and could be prevented by blockade of potentiation with the N-methyl-d-aspartate (NMDA) receptor antagonist, (±)-2-amino-5-phosphonopentanoic acid (AP-5). Furthermore, blockade of IL-1 receptors by the specific interleukin-1 receptor antagonist (IL-1ra) resulted in a reversible impairment of long-term potentiation maintenance without affecting its induction. These results show for the first time that the production of biologically significant amounts of IL-1β in the brain can be induced by a sustained increase in the activity of a discrete population of neurons and suggest a physiological involvement of this cytokine in synaptic plasticity.
Resumo:
The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.
Resumo:
FLK-1/vascular endothelial growth factor receptor 2 (VEGFR-2) is one of the receptors for VEGF. In this study we examined the effect of cell density on activation of VEGFR-2. VEGF induces only very slight tyrosine phosphorylation of VEGFR-2 in confluent (95–100% confluent) pig aortic endothelial (PAE) cells. In contrast, robust VEGF-dependent tyrosine phosphorylation of VEGFR-2 was observed in cells plated in sparse culture conditions (60–65% confluent). A similar cell density-dependent phenomenon was observed in different endothelial cells but not in NIH-3T3 fibroblast cells expressing VEGFR-2. Stimulating cells with high concentrations of VEGF or replacing the extracellular domain of VEGFR-2 with that of the colony-stimulating factor 1 receptor did not alleviate the sensitivity of VEGFR-2 to cell density, indicating that the confluent cells were probably not secreting an antagonist to VEGF. Furthermore, in PAE cells, ectopically introduced platelet-derived growth factor α receptor could be activated at both high and low cell density conditions, indicating that the density effect was not universal for all receptor tyrosine kinases expressed in endothelial cells. In addition to lowering the density of cells, removing divalent cations from the medium of confluent cells potentiated VEGFR-2 phosphorylation in response to VEGF. These findings suggested that cell–cell contact may be playing a role in regulating the activation of VEGFR-2. To this end, pretreatment of confluent PAE cells with a neutralizing anti-cadherin-5 antibody potentiated the response of VEGFR-2 to VEGF. Our data demonstrate that endothelial cell density plays a critical role in regulating VEGFR-2 activity, and that the underlying mechanism appears to involve cadherin-5.
Resumo:
The cytokine IL-1 mediates diverse forms of neurodegeneration, but its mechanism of action is unknown. We have demonstrated previously that exogenous and endogenous IL-1 acts specifically in the rat striatum to dramatically enhance ischemic and excitotoxic brain damage and cause extensive cortical injury. Here we tested the hypothesis that this distant effect of IL-1 is mediated through polysynaptic striatal outputs to the cortex via the hypothalamus. We show that IL-1β injected into the rat striatum with the excitotoxin α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) caused increased expression of IL-1β (mRNA and protein) mainly in the cortex where maximum injury occurs. Marked increases in IL-1β mRNA and protein were also observed in the hypothalamus. S-AMPA, injected alone into the striatum, caused only localized damage, but administration of IL-1β into either the striatum or the lateral hypothalamus immediately after striatal S-AMPA resulted in widespread cell loss throughout the ipsilateral cortex. Finally we showed that the cortical cell death produced by striatal coinjection of S-AMPA and IL-1β was significantly reduced by administration of the IL-1 receptor antagonist into the lateral hypothalamus. These data suggest that IL-1β can act in the hypothalamus to modify cell viability in the cortex. We conclude that IL-1-dependent pathways project from the striatum to the cortex via the hypothalamus and lead to cortical injury, and that these may contribute to a number of human neurological conditions including stroke and head trauma.
Resumo:
The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the precursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.
Resumo:
The structure of the extracellular, three-domain poliovirus receptor (CD155) complexed with poliovirus (serotype 1) has been determined to 22-Å resolution by means of cryo-electron microscopy and three-dimensional image-reconstruction techniques. Density corresponding to the receptor was isolated in a difference electron density map and fitted with known structures, homologous to those of the three individual CD155 Ig-like domains. The fit was confirmed by the location of carbohydrate moieties in the CD155 glycoprotein, the conserved properties of elbow angles in the structures of cell surface molecules with Ig-like folds, and the concordance with prior results of CD155 and poliovirus mutagenesis. CD155 binds in the poliovirus “canyon” and has a footprint similar to that of the intercellular adhesion molecule-1 receptor on human rhinoviruses. However, the orientation of the long, slender CD155 molecule relative to the poliovirus surface is quite different from the orientation of intercellular adhesion molecule-1 on rhinoviruses. In addition, the residues that provide specificity of recognition differ for the two receptors. The principal feature of receptor binding common to these two picornaviruses is the site in the canyon at which binding occurs. This site may be a trigger for initiation of the subsequent uncoating step required for viral infection.
Resumo:
Mice deficient in the Flk-1 receptor tyrosine kinase are known to die in utero because of defective vascular and hematopoietic development. Here, we show that flk-1−/− embryonic stem cells are nevertheless able to differentiate into hematopoietic and endothelial cells in vitro, although they give rise to a greatly reduced number of blast colonies, a measure of hemangioblast potential. Furthermore, normal numbers of hematopoietic progenitors are found in 7.5-day postcoitum flk-1−/− embryos, even though 8.5-day postcoitum flk-1−/− embryos are known to be deficient in such cells. Our results suggest that hematopoietic/endothelial progenitors arise independently of Flk-1, but that their subsequent migration and expansion require a Flk-1-mediated signal.
Resumo:
Alcohols in the homologous series of n-alcohols increase in central nervous system depressant potency with increasing chain length until a “cutoff” is reached, after which further increases in molecular size no longer increase alcohol potency. A similar phenomenon has been observed in the regulation of ligand-gated ion channels by alcohols. Different ligand-gated ion channels exhibit radically different cutoff points, suggesting the existence of discrete alcohol binding pockets of variable size on these membrane proteins. The identification of amino acid residues that determine the alcohol cutoff may, therefore, provide information about the location of alcohol binding sites. Alcohol regulation of the glycine receptor is critically dependent on specific amino acid residues in transmembrane domains 2 and 3 of the α subunit. We now demonstrate that these residues in the glycine α1 and the γ-aminobutyric acid ρ1 receptors also control alcohol cutoff. By mutation of Ser-267 to Gln, it was possible to decrease the cutoff in the glycine α1 receptor, whereas mutation of Ile-307 and/or Trp-328 in the γ-aminobutyric acid ρ1 receptor to smaller residues increased the cutoff. These results support the existence of alcohol binding pockets in these membrane proteins and suggest that the amino acid residues present at these positions can control the size of the alcohol binding cavity.