961 resultados para medical applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the well-known MC code FLUKA was used to simulate the GE PETrace cyclotron (16.5 MeV) installed at “S. Orsola-Malpighi” University Hospital (Bologna, IT) and routinely used in the production of positron emitting radionuclides. Simulations yielded estimates of various quantities of interest, including: the effective dose distribution around the equipment; the effective number of neutron produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar, the assessment of the saturation yield of radionuclides used in nuclear medicine. The simulations were validated against experimental measurements in terms of physical and transport parameters to be used at the energy range of interest in the medical field. The validated model was also extensively used in several practical applications uncluding the direct cyclotron production of non-standard radionuclides such as 99mTc, the production of medical radionuclides at TRIUMF (Vancouver, CA) TR13 cyclotron (13 MeV), the complete design of the new PET facility of “Sacro Cuore – Don Calabria” Hospital (Negrar, IT), including the ACSI TR19 (19 MeV) cyclotron, the dose field around the energy selection system (degrader) of a proton therapy cyclotron, the design of plug-doors for a new cyclotron facility, in which a 70 MeV cyclotron will be installed, and the partial decommissioning of a PET facility, including the replacement of a Scanditronix MC17 cyclotron with a new TR19 cyclotron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surgical treatment of liver tumours relies on precise localization of the lesions and detailed knowledge of the patient-specific vascular and biliary anatomy. Detailed three-dimensional (3D) anatomical information facilitates complete tumour removal while preserving a sufficient amount of functional liver tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnostics imaging is an essential component of patient selection and treatment planning in oral rehabilitation by means of osseointegrated implants. In 2002, the EAO produced and published guidelines on the use of diagnostic imaging in implant dentistry. Since that time, there have been significant developments in both the application of cone beam computed tomography as well as in the range of surgical and prosthetic applications that can potentially benefit from its use. However, medical exposure to ionizing radiation must always be justified and result in a net benefit to the patient. The as low a dose as is reasonably achievable principle must also be applied taking into account any alternative techniques that might achieve the same objectives. This paper reports on current EAO recommendations arising from a consensus meeting held at the Medical University of Warsaw (2011) to update these guidelines. Radiological considerations are detailed, including justification and optimization, with a special emphasis on the obligations that arise for those who prescribe or undertake such investigations. The paper pays special attention to clinical indications and radiographic diagnostic considerations as well as to future developments and trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article summarizes the collective views expressed at the fourth session of the workshop Tissue Engineering-the Next Generation, which was devoted to the translation of results of tissue engineering research into applications. Ernst Hunziker described the paradigm of a dual translational approach, and argued that tissue engineering should be guided by the dimensions and physiological setting of the bodily compartment to be repaired. Myron Spector discussed collagen-glycosaminoglycan (GAG) scaffolds for musculoskeletal tissue engineering. Jeanette Libera focused on the biological and clinical aspects of cartilage tissue engineering, and described a completely autologous procedure for engineering cartilage using the patient's own chondrocytes and blood serum. Arthur Gertzman reviewed the applications of allograft tissues in orthopedic surgery, and outlined the potential of allograft tissues as models for biological and medical studies. Savio Woo discussed a list of functional tissue engineering approaches designed to restore the biochemical and biomechanical properties of injured ligaments and tendons to be closer to that of the normal tissues. Specific examples of using biological scaffolds that have chemoattractants as well as growth factors with unique contact guidance properties to improve their healing process were shown. Anthony Ratcliffe discussed the translation of the results of research into products that are profitable and meet regulatory requirements. Michael Lysaght challenged the proposition that commercial and clinical failures of early tissue engineering products demonstrate a need for more focus on basic research. Arthur Coury described the evolution of tissue engineering products based on the example of Genzyme, and how various definitions of success and failure can affect perceptions and policies relative to the status and advancement of the field of tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Study of behavior and influence of a multileaf collimator (MLC) on dose calculation, verification, and portal energy spectra in the case of intensity-modulated fields obtained with a step-and-shoot or a dynamic technique. METHODS: The 80-leaf MLC for the Varian Clinac 2300 C/D was implemented in a previously developed Monte Carlo (MC) based multiple source model (MSM) for a 6 MV photon beam. Using this model and the MC program GEANT, dose distributions, energy fluence maps and energy spectra at different portal planes were calculated for three different MLC applications. RESULTS: The comparison of MC-calculated dose distributions in the phantom and portal plane, with those measured with films showed an agreement within 3% and 1.5 mm for all cases studied. The deviations mainly occur in the extremes of the intensity modulation. The MC method allows to investigate, among other aspects, dose components, energy fluence maps, tongue-and-groove effects and energy spectra at portal planes. CONCLUSION: The MSM together with the implementation of the MLC is appropriate for a number of investigations in intensity-modulated radiation therapy (IMRT).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Not all clinical trials are published, which may distort the evidence that is available in the literature. We studied the publication rate of a cohort of clinical trials and identified factors associated with publication and nonpublication of results. METHODS: We analysed the protocols of randomized clinical trials of drug interventions submitted to the research ethics committee of University Hospital (Inselspital) Bern, Switzerland from 1988 to 1998. We identified full articles published up to 2006 by searching the Cochrane CENTRAL database (issue 02/2006) and by contacting investigators. We analyzed factors associated with the publication of trials using descriptive statistics and logistic regression models. RESULTS: 451 study protocols and 375 corresponding articles were analyzed. 233 protocols resulted in at least one publication, a publication rate of 52%. A total of 366 (81%) trials were commercially funded, 47 (10%) had non-commercial funding. 346 trials (77%) were multi-centre studies and 272 of these (79%) were international collaborations. In the adjusted logistic regression model non-commercial funding (Odds Ratio [OR] 2.42, 95% CI 1.14-5.17), multi-centre status (OR 2.09, 95% CI 1.03-4.24), international collaboration (OR 1.87, 95% CI 0.99-3.55) and a sample size above the median of 236 participants (OR 2.04, 95% CI 1.23-3.39) were associated with full publication. CONCLUSIONS: In this cohort of applications to an ethics committee in Switzerland, only about half of clinical drug trials were published. Large multi-centre trials with non-commercial funding were more likely to be published than other trials, but most trials were funded by industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the open source framework MARVIN for rapid application development in the field of biomedical and clinical research. MARVIN applications consist of modules that can be plugged together in order to provide the functionality required for a specific experimental scenario. Application modules work on a common patient database that is used to store and organize medical data as well as derived data. MARVIN provides a flexible input/output system with support for many file formats including DICOM, various 2D image formats and surface mesh data. Furthermore, it implements an advanced visualization system and interfaces to a wide range of 3D tracking hardware. Since it uses only highly portable libraries, MARVIN applications run on Unix/Linux, Mac OS X and Microsoft Windows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen rückt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten Öffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollständiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag verändern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch geprägt sind und sich nur punktuell auf Beispiele stützen. Dieser Beitrag geht von den Bedürfnissen der Menschen aus, wie sie z.B. in der Maslow’schen Bedürfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of transcriptional pulsing approaches using the c-fos and Tet-off promoter systems greatly facilitated studies of mRNA turnover in mammalian cells. However, optimal protocols for these approaches vary for different cell types and/or physiological conditions, limiting their widespread application. In this study, we have further optimized transcriptional pulsing systems for different cell lines and developed new protocols to facilitate investigation of various aspects of mRNA turnover. We apply the Tet-off transcriptional pulsing strategy to investigate ARE-mediated mRNA decay in human erythroleukemic K562 cells arrested at various phases of the cell cycle by pharmacological inhibitors. This application facilitates studies of the role of mRNA stability in control of cell-cycle dependent gene expression. To advance the investigation of factors involved in mRNA turnover and its regulation, we have also incorporated recently developed transfection and siRNA reagents into the transcriptional pulsing approach. Using these protocols, siRNA and DNA plasmids can be effectively cotransfected into mouse NIH3T3 cells to obtain high knockdown efficiency. Moreover, we have established a tTA-harboring stable line using human bronchial epithelial BEAS-2B cells and applied the transcriptional pulsing approach to monitor mRNA deadenylation and decay kinetics in this cell system. This broadens the application of the transcriptional pulsing system to investigate the regulation of mRNA turnover related to allergic inflammation. Critical factors that need to be considered when employing these approaches are characterized and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene silencing due to epigenetic mechanisms shows evidence of significant contributions to cancer development. We hypothesis that the genetic architecture based on retrotransposon elements surrounding the transcription start site, plays an important role in the suppression and promotion of DNA methylation. In our investigation we found a high rate of SINE and LINEs retrotransposon elements near the transcription start site of unmethylated genes when compared to methylated genes. The presence of these elements were positively associated with promoter methylation, contrary to logical expectations, due to the malicious effects of retrotransposon elements which insert themselves randomly into the genome causing possible loss of gene function. In our genome wide analysis of human genes, results suggested that 22% of the genes in cancer were predicted to be methylation-prone; in cancer these genes are generally down-regulated and function in the development process. In summary, our investigation validated our hypothesis and showed that these widespread genomic elements in cancer are highly associated with promoter DNA methylation and may further participate in influencing epigenetic regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are found over-expressed in a variety of tumors cells including glioma cells as well as angiogenic blood vessels. Noninvasive imaging of EphB4 could potentially increase early detection rates, monitor response to therapy directed against EphB4, and improve patient outcomes. Targeted delivery of EphB4 receptor specific peptide conjugated hollow gold nanoshells (HAuNS) into tumors has great potential in cancer imaging and photothermal therapy. In this study, we developed an EphB4 specific peptide named TNYL-RAW and labeled with radioisotope 64Cu and Cy5.5 dye. We also conjugate this specific peptide with hollow gold nanoshells (HAuNS) to evaluate targeted photothermal therapy of cancers. In vitro, 64Cu-DOTA-TNYL- RAW specifically bind to CT26 and PC-3M cells but not to A549 cells. In vivo, Small-animal PET/CT clearly showed the significant uptake of 64Cu-DOTA-TNYL-RAW in CT26 and PC-3M tumors but not in A549 tumors. Furthermore, µPET/CT and near-infrared optical imaging clearly showed the uptake of the dual labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of nude mice. In U251 tumors, Cy5.5-labeled peptide can bind to EphB4-expressing tumor blood vessels and tumors cells. But in U87 models, dual labeled peptide only could bind to tumor associated blood vessels. Also, Irradiation of PC-3M and CT-26 cell treated with TNYL-PEG-HAuNS nanopatilces with near-infrared (NIR) laser resulted in selective destruction of these cells in vitro. EphB4 targeted TNYL-PEG-HAuNS showed more photothermal killing effect on CT26 tumor model than PEG-HAuNS did. In summary, tumors with overexpression of EphB4 receptors can be noninvasively visualized by micro PET/CT with 64Cu labeled or dual labeled TNYL-RAW peptide. Targeted delivery of TNYL-RAW conjugated HAuNS into tumors can greatly improve the treatment effect of photothermal therapy. The information acquired with this study should be advantageous in improving diagnostics and future applications in photothermal ablation therapy in clinical.