969 resultados para mean-variance portfolio optimization
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: (1) help global investors determine the optimal selection and holding periods for momentum portfolios, (2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, (3) assess the investment strategy profits after considering transaction costs, and (4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
The profitability of momentum portfolios in the equity markets is derived from the continuation of stock returns over medium time horizons. The empirical evidence of momentum, however, is significantly different across markets around the world. The purpose of this dissertation is to: 1) help global investors determine the optimal selection and holding periods for momentum portfolios, 2) evaluate the profitability of the optimized momentum portfolios in different time periods and market states, 3) assess the investment strategy profits after considering transaction costs, and 4) interpret momentum returns within the framework of prior studies on investors’ behavior. Improving on the traditional practice of selecting arbitrary selection and holding periods, a genetic algorithm (GA) is employed. The GA performs a thorough and structured search to capture the return continuations and reversals patterns of momentum portfolios. Three portfolio formation methods are used: price momentum, earnings momentum, and earnings and price momentum and a non-linear optimization procedure (GA). The focus is on common equity of the U.S. and a select number of countries, including Australia, France, Germany, Japan, the Netherlands, Sweden, Switzerland and the United Kingdom. The findings suggest that the evolutionary algorithm increases the annualized profits of the U.S. momentum portfolios. However, the difference in mean returns is statistically significant only in certain cases. In addition, after considering transaction costs, both price and earnings and price momentum portfolios do not appear to generate abnormal returns. Positive risk-adjusted returns net of trading costs are documented solely during “up” markets for a portfolio long in prior winners only. The results on the international momentum effects indicate that the GA improves the momentum returns by 2 to 5% on an annual basis. In addition, the relation between momentum returns and exchange rate appreciation/depreciation is examined. The currency appreciation does not appear to influence significantly momentum profits. Further, the influence of the market state on momentum returns is not uniform across the countries considered. The implications of the above findings are discussed with a focus on the practical aspects of momentum investing, both in the U.S. and globally.
Resumo:
Introduction: Gait after stroke is characterized by a significant asymmetry between the lower limbs, with predominant use of the non-paretic lower limb (NPLL) over using the paretic lower limb. Accordingly, it has been suggested that adding load/weight to the NPLL as a form of restricting the movement of this limb may favor the use of the paretic limb, reducing interlimb asymmetry. However, few studies have been conducted up to this moment, which only investigated the immediate effects of this practice. Objectives: 1) Investigating whether there is an influence of adding load to the NPLL during treadmill training on cardiovascular parameters and on gait performance of individuals with stroke, compared to treadmill training without load addition; 2) Analyzing the effects of treadmill training with and without load added to the NPLL on kinematic parameters of each lower limb during gait; 3) Analyzing the effects of treadmill training with and without load added to the NPLL on measurements of functional mobility and postural balance of these patients. Materials and Methods: This is a randomized single blinded clinical trial involving 38 subjects, with a mean age of 56.5 years, at the subacute post-stroke phase (with mean time since stroke of 4.5 months). Participants were randomly assigned into an experimental group (EG) or control group (CG). EG (n= 19) was submitted to gait training on a treadmill with the addition of load to the NPLL by ankle weights equivalent to 5% of body weight. CG (n= 19) was only submitted to gait training on a treadmill. Behavioral strategies which included home exercises were also applied to both groups. The interventions occurred daily for two consecutive weeks (Day 1 to Day 9), being of 30 minutes duration each. Outcome measures: postural balance (Berg Functional Balance Scale – BBS), functional mobility (Timed Up and Go – TUG; kinematic variables of 180° turning) and kinematic gait variables were assessed at baseline (Day 0), after four training sessions (Day 4), after nine training sessions (Day 9), and 40 days after completion of training (Follow-up). Cardiovascular parameters (mean arterial pressure and heart rate) were evaluated at four moments within each training session. Analysis of variance (ANOVA) was used to compare outcomes between EG and CG in the course of the study (Day 0, Day 4, Day 9 and Follow-up). Unpaired t-tests allowed for intergroup comparison at each training session. 5% significance was used for all tests. Results: 1) Cardiovascular parameters (systemic arterial pressure, heart rate and derivated variables) did not change after the interventions and there were no differences between groups within each training session. There was an improvement in gait performance, with increased speed and distance covered, with no statistically significant difference between groups. 2) After the interventions, patients had increased paretic and non-paretic step lengths, in addition to exhibiting greater hip and knee joint excursion on both lower limbs. The gains were observed in the EG and CG, with no statistical difference between the groups and (mostly) maintained at follow-up. 3) After the interventions, patients showed better postural balance (higher scores on BBS) and functional mobility (reduced time spent on the TUG test and better performance on the 180° turning). All gains were observed in the EG and CG, with no statistically significant difference between groups and were maintained at follow-up. Conclusions: The addition of load to the NPLL did not affect cardiovascular parameters in patients with subacute stroke, similar to treadmill training without load, thus seemingly a safe training to be applied to these patients. However, the use of the load did not bring any additional benefits to gait training. The gait training program (nine training sessions on a treadmill + strategies and exercises for paretic limb stimulation) was useful for improving gait performance and kinematics, functional mobility and postural balance, and its use is suggested to promote the optimization of these outcomes in the subacute phase after stroke.
Resumo:
Purpose: To investigate the effect of incorporating a beam spreading parameter in a beam angle optimization algorithm and to evaluate its efficacy for creating coplanar IMRT lung plans in conjunction with machine learning generated dose objectives.
Methods: Fifteen anonymized patient cases were each re-planned with ten values over the range of the beam spreading parameter, k, and analyzed with a Wilcoxon signed-rank test to determine whether any particular value resulted in significant improvement over the initially treated plan created by a trained dosimetrist. Dose constraints were generated by a machine learning algorithm and kept constant for each case across all k values. Parameters investigated for potential improvement included mean lung dose, V20 lung, V40 heart, 80% conformity index, and 90% conformity index.
Results: With a confidence level of 5%, treatment plans created with this method resulted in significantly better conformity indices. Dose coverage to the PTV was improved by an average of 12% over the initial plans. At the same time, these treatment plans showed no significant difference in mean lung dose, V20 lung, or V40 heart when compared to the initial plans; however, it should be noted that these results could be influenced by the small sample size of patient cases.
Conclusions: The beam angle optimization algorithm, with the inclusion of the beam spreading parameter k, increases the dose conformity of the automatically generated treatment plans over that of the initial plans without adversely affecting the dose to organs at risk. This parameter can be varied according to physician preference in order to control the tradeoff between dose conformity and OAR sparing without compromising the integrity of the plan.
Resumo:
Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation.
Currently, due to computational and algorithmic limitations, free energy calculations are limited in scope.
In this work, we propose two methods for improving the efficiency of free energy calculations.
First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths.
We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost.
Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers.
We develop a new free energy estimator, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
Combining these two advancements, we show that for some test models, optimal expanded-space paths have a nearly 80% reduction in variance relative to the standard path.
Additionally, our free energy estimator converges at a more consistent rate and on average 1.8 times faster when we enable path searching, even when the cost of path discovery and refinement is considered.
Resumo:
This report describes a tool for global optimization that implements the Differential Evolution optimization algorithm as a new Excel add-in. The tool takes a step beyond Excel’s Solver add-in, because Solver often returns a local minimum, that is, a minimum that is less than or equal to nearby points, while Differential Evolution solves for the global minimum, which includes all feasible points. Despite complex underlying mathematics, the tool is relatively easy to use, and can be applied to practical optimization problems, such as establishing pricing and awards in a hotel loyalty program. The report demonstrates an example of how to develop an optimum approach to that problem.
Resumo:
To meet electricity demand, electric utilities develop growth strategies for generation, transmission, and distributions systems. For a long time those strategies have been developed by applying least-cost methodology, in which the cheapest stand-alone resources are simply added, instead of analyzing complete portfolios. As a consequence, least-cost methodology is biased in favor of fossil fuel-based technologies, completely ignoring the benefits of adding non-fossil fuel technologies to generation portfolios, especially renewable energies. For this reason, this thesis introduces modern portfolio theory (MPT) to gain a more profound insight into a generation portfolio’s performance using generation cost and risk metrics. We discuss all necessary assumptions and modifications to this finance technique for its application within power systems planning, and we present a real case of analysis. Finally, the results of this thesis are summarized, pointing out the main benefits and the scope of this new tool in the context of electricity generation planning.
Resumo:
According to the significance of the econometric models in foreign exchange market, the purpose of this research is to give a closer examination on some important issues in this area. The research covers exchange rate pass-through into import prices, liquidity risk and expected returns in the currency market, and the common risk factors in currency markets. Firstly, with the significant of the exchange rate pass-through in financial economics, the first empirical chapter studies on the degree of exchange rate pass-through into import in emerging economies and developed countries in panel evidences for comparison covering the time period of 1970-2009. The pooled mean group estimation (PMGE) is used for the estimation to investigate the short run coefficients and error variance. In general, the results present that the import prices are affected positively, though incompletely, by the exchange rate. Secondly, the following study addresses the question whether there is a relationship between cross-sectional differences in foreign exchange returns and the sensitivities of the returns to fluctuations in liquidity, known as liquidity beta, by using a unique dataset of weekly order flow. Finally, the last study is in keeping with the study of Lustig, Roussanov and Verdelhan (2011), which shows that the large co-movement among exchange rates of different currencies can explain a risk-based view of exchange rate determination. The exploration on identifying a slope factor in exchange rate changes is brought up. The study initially constructs monthly portfolios of currencies, which are sorted on the basis of their forward discounts. The lowest interest rate currencies are contained in the first portfolio and the highest interest rate currencies are in the last. The results performs that portfolios with higher forward discounts incline to contain higher real interest rates in overall by considering the first portfolio and the last portfolio though the fluctuation occurs.
Resumo:
Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.
Resumo:
Mestrado em Ciências Actuariais
Resumo:
The radiopacity of esthetic root canal posts may impair the assessment of their fit to the root canal when using radiographic images. This study determined in vitro the radiographic density of esthetic root canal posts using digital images. Thirty-six roots of human maxillary canines were assigned to six groups (N=6 per group): Reforpost (RP); Aestheti-Plus (AP); Reforpost MIX (RPM); D.T. Light Post (LP); Reforpost Radiopaque (RPR); and White Post DC (WP). Standardized digital images of the posts were obtained in different conditions: outside the root canal, inside the canal before and after cementation using luting material, and with a tissue simulator. Analysis of variance was used to compare the radiopacity mean values among the posts outside the root canal and among the posts under the other conditions, and the t unpaired test to compare the radiopacity between the posts and the dentin, and between the posts and the root canal space. There was no statistically significant difference in radiopacity between RP and RPM, and LP and WP. AP posts showed radiopacity values significantly lower than those for dentin. No statistically significant difference was found between posts (RP and AP) and the root canal space. A statistically significant difference was observed between the luted and non-luted posts; additionally, luted posts with and without tissue simulator showed no significant differences. Most of the cement-luted posts analyzed in this study were distinguishable from the density of adjacent dentin surfaces, allowing radiographic confirmation of the fit of the post in the canal. The success of using esthetic root canal posts depends mainly on the fit of the post within the canal.[1] The radiopacity of a post allows for radiographic imaging to be used to determine the fit, an important factor in a clinical perspective.
Resumo:
To assess the effects of a soy dietary supplement on the main biomarkers of cardiovascular health in postmenopausal women compared with the effects of low-dose hormone therapy (HT) and placebo. Double-blind, randomized and controlled intention-to-treat trial. Sixty healthy postmenopausal women, aged 40-60 years, 4.1 years mean time since menopause were recruited and randomly assigned to 3 groups: a soy dietary supplement group (isoflavone 90mg), a low-dose HT group (estradiol 1 mg plus noretisterone 0.5 mg) and a placebo group. Lipid profile, glucose level, body mass index, blood pressure and abdominal/hip ratio were evaluated in all the participants at baseline and after 16 weeks. Statistical analyses were performed using the χ2 test, Fisher's exact test, Kruskal-Wallis non-parametric test, analysis of variance (ANOVA), paired Student's t-test and Wilcoxon test. After a 16-week intervention period, total cholesterol decreased 11.3% and LDL-cholesterol decreased 18.6% in the HT group, but both did not change in the soy dietary supplement and placebo groups. Values for triglycerides, HDL-cholesterol, glucose level, body mass index, blood pressure and abdominal/hip ratio did not change over time in any of the three groups. The use of dietary soy supplement did not show any significant favorable effect on cardiovascular health biomarkers compared with HT. The trial is registered at the Brazilian Clinical Trials Registry (Registro Brasileiro de Ensaios Clínicos - ReBEC), number RBR-76mm75.
Resumo:
We report the first measurements of the moments--mean (M), variance (σ(2)), skewness (S), and kurtosis (κ)--of the net-charge multiplicity distributions at midrapidity in Au+Au collisions at seven energies, ranging from sqrt[sNN]=7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net charge, and are sensitive to the location of the QCD critical point. We compare the products of the moments, σ(2)/M, Sσ, and κσ(2), with the expectations from Poisson and negative binomial distributions (NBDs). The Sσ values deviate from the Poisson baseline and are close to the NBD baseline, while the κσ(2) values tend to lie between the two. Within the present uncertainties, our data do not show nonmonotonic behavior as a function of collision energy. These measurements provide a valuable tool to extract the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.
Resumo:
In acquired immunodeficiency syndrome (AIDS) studies it is quite common to observe viral load measurements collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays. A complication arises when these continuous repeated measures have a heavy-tailed behavior. For such data structures, we propose a robust structure for a censored linear model based on the multivariate Student's t-distribution. To compensate for the autocorrelation existing among irregularly observed measures, a damped exponential correlation structure is employed. An efficient expectation maximization type algorithm is developed for computing the maximum likelihood estimates, obtaining as a by-product the standard errors of the fixed effects and the log-likelihood function. The proposed algorithm uses closed-form expressions at the E-step that rely on formulas for the mean and variance of a truncated multivariate Student's t-distribution. The methodology is illustrated through an application to an Human Immunodeficiency Virus-AIDS (HIV-AIDS) study and several simulation studies.