944 resultados para maximal ontological completeness
Resumo:
We characterise positive braid links with positive Seifert form via a finite number of forbidden minors. From this we deduce a one-to-one correspondence between prime positive braid links with positive Seifert form and simply laced Dynkin diagrams, as well as a simple classification of alternating positive braid knots.
Resumo:
BACKGROUND Current reporting guidelines do not call for standardised declaration of follow-up completeness, although study validity depends on the representativeness of measured outcomes. The Follow-Up Index (FUI) describes follow-up completeness at a given study end date as ratio between the investigated and the potential follow-up period. The association between FUI and the accuracy of survival-estimates was investigated. METHODS FUI and Kaplan-Meier estimates were calculated twice for 1207 consecutive patients undergoing aortic repair during an 11-year period: in a scenario A the population's clinical routine follow-up data (available from a prospective registry) was analysed conventionally. For the control scenario B, an independent survey was completed at the predefined study end. To determine the relation between FUI and the accuracy of study findings, discrepancies between scenarios regarding FUI, follow-up duration and cumulative survival-estimates were evaluated using multivariate analyses. RESULTS Scenario A noted 89 deaths (7.4%) during a mean considered follow-up of 30±28months. Scenario B, although analysing the same study period, detected 304 deaths (25.2%, P<0.001) as it scrutinized the complete follow-up period (49±32months). FUI (0.57±0.35 versus 1.00±0, P<0.001) and cumulative survival estimates (78.7% versus 50.7%, P<0.001) differed significantly between scenarios, suggesting that incomplete follow-up information led to underestimation of mortality. Degree of follow-up completeness (i.e. FUI-quartiles and FUI-intervals) correlated directly with accuracy of study findings: underestimation of long-term mortality increased almost linearly by 30% with every 0.1 drop in FUI (adjusted HR 1.30; 95%-CI 1.24;1.36, P<0.001). CONCLUSION Follow-up completeness is a pre-requisite for reliable outcome assessment and should be declared systematically. FUI represents a simple measure suited as reporting standard. Evidence lacking such information must be challenged as potentially flawed by selection bias.
Resumo:
The use of exercise electrocardiography (ECG) to detect latent coronary heart disease (CHD) is discouraged in apparently healthy populations because of low sensitivity. These recommendations however, are based on the efficacy of evaluation of ischemia (ST segment changes) with little regard for other measures of cardiac function that are available during exertion. The purpose of this investigation was to determine the association of maximal exercise hemodynamic responses with risk of mortality due to all-causes, cardiovascular disease (CVD), and coronary heart disease (CHD) in apparently healthy individuals. Study participants were 20,387 men (mean age = 42.2 years) and 6,234 women (mean age = 41.9 years) patients of a preventive medicine center in Dallas, TX examined between 1971 and 1989. During an average of 8.1 years of follow-up, there were 348 deaths in men and 66 deaths in women. In men, age-adjusted all-cause death rates (per 10,000 person years) across quartiles of maximal systolic blood pressure (SBP) (low to high) were: 18.2, 16.2, 23.8, and 24.6 (p for trend $<$0.001). Corresponding rates for maximal heart rate were: 28.9, 15.9, 18.4, and 15.1 (p trend $<$0.001). After adjustment for confounding variables including age, resting systolic pressure, serum cholesterol and glucose, body mass index, smoking status, physical fitness and family history of CVD, risks (and 95% confidence interval (CI)) of all-cause mortality for quartiles of maximal SBP, relative to the lowest quartile, were: 0.96 (0.70-1.33), 1.36 (1.01-1.85), and 1.37 (0.98-1.92) for quartiles 2-4 respectively. Similar risks for maximal heart rate were: 0.61 (0.44-0.85), 0.69 (0.51-0.93), and 0.60 (0.41-0.87). No associations were noted between maximal exercise rate-pressure product mortality. Similar results were seen for risk of CVD and CHD death. In women, similar trends in age-adjusted all-cause and CVD death rates across maximal SBP and heart rate categories were observed. Sensitivity of the exercise test in predicting mortality was enhanced when ECG results were evaluated together with maximal exercise SBP or heart rate with a concomitant decrease in specificity. Positive predictive values were not improved. The efficacy of the exercise test in predicting mortality in apparently healthy men and women was not enhanced by using maximal exercise hemodynamic responses. These results suggest that an exaggerated systolic blood pressure or an attenuated heart rate response to maximal exercise are risk factors for mortality in apparently healthy individuals. ^