903 resultados para maintaining and augmenting Plant design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years the Iowa DOT has shifted emphasis from the construction of new roads to the maintenance and preservation of existing highways. A need has developed for analyzing pavements structurally to select the correct rehabilitation strategy and to properly design a pavement overlay if necessary. This need has been fulfilled by Road Rater testing which has been used successfully on all types of pavements to evaluate pavement and subgrade conditions and to design asphaltic concrete overlays. The Iowa Road Rater Design Method has been simplified so that it may be easily understood and used by the widely diverse groups of individuals which may be involved in pavement restoration and management. Road Rater analysis techniques have worked well to date and have been verified by pavement coring, soils sampling and testing, and pavement removal by block sampling. Void detection testing has also been performed experimentally in Iowa, and results indicate that the Road Rater can be used to locate pavement voids and that Road Rater analysis techniques are reasonably accurate. The success of Road Rater research and development has made deflection test data one of the most important pavement management inputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This literature review focuses on factors influencing drying shrinkage of concrete. Although the factors are normally interrelated, they can be categorized into three groups: paste quantity, paste quality, and other factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addendum to HR-273

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a pavement depends on the quality of its subgrade and subbase layers; these foundational layers play a key role in mitigating the effects of climate and the stresses generated by traffic. Therefore, building a stable subgrade and a properly drained subbase is vital for constructing an effective and long lasting pavement system. This manual has been developed to help Iowa highway engineers improve the design, construction, and testing of a pavement system’s subgrade and subbase layers, thereby extending pavement life. The manual synthesizes current and previous research conducted in Iowa and other states into a practical geotechnical design guide [proposed as Chapter 6 of the Statewide Urban Design and Specifications (SUDAS) Design Manual] and construction specifications (proposed as Section 2010 of the SUDAS Standard Specifications) for subgrades and subbases. Topics covered include the important characteristics of Iowa soils, the key parameters and field properties of optimum foundations, embankment construction, geotechnical treatments, drainage systems, and field testing tools, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to establish cell suspension culture and plant regeneration via somatic embryogenesis of a Brazilian plantain, cultivar Terra Maranhão, AAB. Immature male flowers were used as explant source for generating highly embryogenic cultures 45 days after inoculation, which were used for establishment of cell suspension culture and multiplication of secondary somatic embryos. Five semisolid culture media were tested for differentiation, maturation, somatic embryos germination and for plant regeneration. An average of 558 plants per one milliliter of 5% SCV (settled cell volume) were regenerated in the MS medium, with 11.4 µM indolacetic acid and 2.2 µM 6-benzylaminopurine. Regenerated plants showed a normal development, and no visible somaclonal variation was observed in vitro. It is possible to regenerate plants from cell suspensions of plantain banana cultivar Terra using MS medium supplemented with 11.4 µM of IAA and 2.2 µM of BAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this work were to estimate the genetic distance among wheat genotypes using morphological, pedigree, molecular, and combined morphological and molecular measures, to determine the correlations between these measures, and to evaluate the combining ability of the genotypes. Three generations and two planting designs were studied. Six wheat genotypes were crossed using a diallel design. The F1, F2 and F3generations were evaluated in the field, in the crop seasons of 2003, 2004 and 2005, under spaced plant and full-row planting designs. The estimated general and specific combining abilities of tested hybrids were influenced both by the generation and the planting design. The correlation coefficients among the distance measures and between these measures and genotype performances of different generations for the two planting designs were low to moderate. In order to obtain a more precise estimate of the genetic distance among cultivars and its association with the hybrid performance, more than one generation, planting design, and genetic distance estimation technique should be employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrated system of design for manufacturing and assembly (DFMA) and internet based collaborative design are presented to support product design, manufacturing process, and assembly planning for axial eccentric oil-pump design. The presented system manages and schedules group oriented collaborative activities. The design guidelines of internet based collaborative design & DFMA are expressed. The components and the manufacturing stages of axial eccentric oil-pump are expressed in detail. The file formats of the presented system include the data types of collaborative design of the product, assembly design, assembly planning and assembly system design. Product design and assembly planning can be operated synchronously and intelligently and they are integrated under the condition of internet based collaborative design and DFMA. The technologies of collaborative modelling, collaborative manufacturing, and internet based collaborative assembly for the specific pump construction are developed. A seven-security level is presented to ensure the security of the internet based collaborative design system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Les champignons endomycorhiziens arbusculaires (CEA) ont co-évolué avec les plantes terrestres depuis plus de 400 millions d'années. De nos jours, les CEA forment une symbiose avec les racines de la majorité des plantes terrestres. Les CEA sont écologiquement importants parce qu'ils influencent non seulement la croissance des plantes, mais aussi leur diversité. Les CEA sont des biotrophes obligatoires qui reçoivent leur énergie sous forme de glucides issus de la photosynthèse des plantes. En contrepartie, les CEA apportent à leurs hôtes du phospore. Les CEA croissent et se reproduisent clonalement en formant des hyphes et des spores. De plus, les CEA sont coenocytiques et multigénomiques; le cytoplasme d'un CEA contient des noyeaux génétiquement différents. De nombreuses études ont démontré que différentes espèces de CEA agissent différentiellement sur la croissance des plantes. Malgré une conscience de plus en plus forte de l'existence d'une variabilité intraspécifique, la question de savoir si les populations de CEA sont génétiquement variables a été largement négligée. Dans le Chapitre 2, j'ai cherché à savoir si une population de CEA provenant d'un seul champ possède une diversité génétique. Cette étude a mis en évidence une importante variation génétique et phénotypique au sein d'individus de la même population. Des différences au niveau de traits de croissance, héritables et liés à la valeur sélective, indiquent que la variation génétique observée entre isolats n'est pas entièrement neutre. Dans le Chapitre 3, je montre que les différences génétiques entre isolats de CEA d'une population provoquent de la variation dans la croissance des plantes. L'effet des isolats dépend des conditions environnementales et varie de bénéfique à parasitique. Dans le Chapitre 4, je montre que des traits de croissance de CEA varient significativement dans des environnements contrastés. J'ai détecté de fortes interactions entre différents génotypes de CEA et différentes espèces de plantes. Ceci suggère que dans un environnement hétérogène, la sélection pourrait localement favoriser différents génotypes de CEA, maintenant ainsi la diversité génétique dans la population. Les résultats de ce travail aident à mieux comprendre l'importance écologique de la variation intraspécifique des CEA. La possibilité de pouvoir cultiver des individus d'une population de CEA au laboratoire nous a permis une meilleure compréhension de la génétique de ces champignons. De plus, ce travail est une base pour de futures expériences visant à comprendre l'importance évolutive de la diversité intraspécifique des CEA. Abstract Arbuscular mycorrhizal fungi (A1VIF) have co-evolved with land plants -for over 400 million years. Today, AMF form symbioses with roots of most land plants and are ecologically important because they alter plant growth and affect plant diversity. AMF are obligate biotrophs, obtaining their energy in form of plant-derived photosynthates. In return,- they supply their host plants with phosphorous. These fungi grow and reproduce clonally by hyphae and spores. They are coenocytic and multigenomic, harbouring genetically different nuclei in a common cytoplasm. Many studies have shown different AMF species differentially alter plant growth. Despite the increasing awareness of intraspecific variability the question whether there is any genetic variation among different individuals of the same population has been largely neglected. In Chapter 2, we investigated whether there is genetic diversity in a field population of the AMF G. intraradices. This work revealed that large genetic and heritable phenotypic variation exists in this AMF population. Differences in fitness-related growth traits among isolates suggest that some of the observed genetic variation is not selectively neutral. In Chapter 3, we show that genetic differences among isolates from the same population also cause variation in plant growth. The isolate effects on plant growth depended on the environmental conditions and varied from beneficial to detrimental. In Chapter 4, fitnessrelated growth traits of genetically different isolates were significantly altered in contrasting environments. we detected strong AMF isolate by host species interacfions which suggests that in a heterogeneous environment selection could locally favour different AMF genotypes, thereby maintaining high genetic diversity in the population. The results of this work contribute to the understanding of the ecological importance of intraspecific diversity in AMF. The possibility of culturing individuals of an AMF field population under laboratory condition gave new insights into AMF genetics and lays a foundation for future studies to analyse the evolutionary significance of intraspecific genetic diversity in AMF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä on tutkittu ammoniakin ja hiilidioksidin erottamista adsorptio prosessilla ja suunniteltiin paineen muunteluun perustuvan adsorptioprosessin (PSA) käyttöä. Työn tarkoituksena oli laskea adsorptioon perustuvan prosessin kannattavuus melamiinitehtaan poistokaasujen erotuksessa. Tätä varten työssä suunniteltiin tehdasmitta-kaavainen prosessi ja arvioitiin sen kannattavuus. Työssä mitattiin adsorptiotasapainot, joiden perusteella sovitettiin sopiva kokeellinen adsorptioisotermi. Adsorptioisotermi lisättiin simulointiohjelmaan, jonka avulla suunniteltiin kaksi vaihtoehtoista pilot laitteistoa kaasujen erottamiseksi. Toisella pilot laitteistolla saadaan mitattua vain läpäisykäyrät, mutta paremmalla versiolla saadaan myös tietoa erotettujen komponenttien puhtaudesta. Suunnittelun tärkeimpiä lähtökohtia on molempien komponenttien mahdollisimman korkea puhtaus ja talteenottoaste. Täysimittakaavainen tehdas suunniteltiin simulointiohjelmiston avulla kahdelle eri kapasiteetille ja arvioitiin niiden kustannukset ja kannattavuus. Adsorptioprosessit osoittautuivat kannattaviksi kaasuseoksen erottamisessa kummassakin tapauksessa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The impacts of humeral offset and stem design after reverse shoulder arthroplasty (RSA) have not been well-studied, particularly with regard to newer stems which have a lower humeral inclination. The purpose of this study was to analyze the effect of different humeral stem designs on range of motion and humeral position following RSA. METHODS: Using a three-dimensional computer model of RSA, a traditional inlay Grammont stem was compared to a short curved onlay stem with different inclinations (155°, 145°, 135°) and offset (lateralised vs medialised). Humeral offset, the acromiohumeral distance (AHD), and range of motion were evaluated for each configuration. RESULTS: Altering stem design led to a nearly 7-mm change in humeral offset and 4 mm in the AHD. Different inclinations of the onlay stems had little influence on humeral offset and larger influence on decreasing the AHD. There was a 10° decrease in abduction and a 5° increase in adduction between an inlay Grammont design and an onlay design with the same inclination. Compared to the 155° model, the 135° model improved adduction by 28°, extension by 24° and external rotation of the elbow at the side by 15°, but led to a decrease in abduction of 9°. When the tray was placed medially, on the 145° model, a 9° loss of abduction was observed. CONCLUSIONS: With varus inclination prostheses (135° and 145°), elevation remains unchanged, abduction slightly decreases, but a dramatic improvement in adduction, extension and external rotation with the elbow at the side are observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our lives and careers are becoming ever more unpredictable. The "life-design paradigm" described in detail in this ground-breaking handbook helps counselors and others meet people's increasing need to develop and manage their own lives and careers. Life-design interventions, suited to a wide variety of cultural settings, help individuals become actors in their own lives and careers by activating, stimulating, and developing their personal resources. This handbook first addresses life-design theory, then shows how to apply life designing to different age groups and with more at-risk people, and looks at how to train life-design counselors