999 resultados para magnetic fabric
Resumo:
The rupture of a cerebral artery aneurysm causes a devastating subarachnoid hemorrhage (SAH), with a mortality of almost 50% during the first month. Each year, 8-11/100 000 people suffer from aneurysmal SAH in Western countries, but the number is twice as high in Finland and Japan. The disease is most common among those of working age, the mean age at rupture being 50-55 years. Unruptured cerebral aneurysms are found in 2-6% of the population, but knowledge about the true risk of rupture is limited. The vast majority of aneurysms should be considered rupture-prone, and treatment for these patients is warranted. Both unruptured and ruptured aneurysms can be treated by either microsurgical clipping or endovascular embolization. In a standard microsurgical procedure, the neck of the aneurysm is closed by a metal clip, sealing off the aneurysm from the circulation. Endovascular embolization is performed by packing the aneurysm from the inside of the vessel lumen with detachable platinum coils. Coiling is associated with slightly lower morbidity and mortality than microsurgery, but the long-term results of microsurgically treated aneurysms are better. Endovascular treatment methods are constantly being developed further in order to achieve better long-term results. New coils and novel embolic agents need to be tested in a variety of animal models before they can be used in humans. In this study, we developed an experimental rat aneurysm model and showed its suitability for testing endovascular devices. We optimized noninvasive MRI sequences at 4.7 Tesla for follow-up of coiled experimental aneurysms and for volumetric measurement of aneurysm neck remnants. We used this model to compare platinum coils with polyglycolic-polylactic acid (PGLA) -coated coils, and showed the benefits of the latter in this model. The experimental aneurysm model and the imaging methods also gave insight into the mechanisms involved in aneurysm formation, and the model can be used in the development of novel imaging techniques. This model is affordable, easily reproducible, reliable, and suitable for MRI follow-up. It is also suitable for endovascular treatment, and it evades spontaneous occlusion.
Resumo:
Gadolinium strontium manganite single crystals of the composition Gd0.5Sr0.5MnO3 were grown using the optical float zone method. We report here the magnetic and magnetotransport properties of these crystals. A large magnetoresistance similar to 10(9)% was observed at 45 K under the application of a 110 kOe field. We have observed notable thermomagnetic anomalies such as open hysteresis loops across the broadened first-order transition between the charge order insulator and the ferromagnetic metallic phase while traversing the magnetic field-temperature (H-T) plane isothermally or isomagnetically. In order to discern the cause of these observed anomalies, the H-T phase diagram for Gd0.5Sr0.5MnO3 is formulated using the magnetization-field (M-H), magnetization-temperature (M-T) and resistance-temperature (R-T) measurements. The temperature dependence of the critical field (i.e. H-up, the field required for transformation to the ferromagnetic metallic phase) is non-monotonic. We note that the non-monotonic variation of the supercooling limit is anomalous according to the classical concepts of the first-order phase transition. Accordingly, H-up values below similar to 20 K are unsuitable to represent the supercooling limit. It is possible that the nature of the metastable states responsible for the observed open hysteresis loops is different from that of the supercooled ones.
Resumo:
Phase separation (PS) in hole-doped cobaltites (La1-xSrxCoxO3) is drawing renewed interest recently. In particular, the magnetic behavior of La0.85Sr0.15CoO3 has been subjected to a controversial debate for the past several years; while some groups show evidence for magnetic PS, others show spin glass (SG) behavior. Here, an attempt is made to resolve the controversy related to ``PS versus SG'' behavior in this compound. We present the results of a comprehensive investigation of the dc magnetization, ac susceptibility, and the magnetotransport properties of La0.85Sr0.15CoO3 samples. We contemplate that the magnetic PS in La0.85Sr0.15CoO3 is neither intrinsic nor inherent, but it is a consequence of the preparation conditions. It is realized that a low temperature annealed (LTA) sample shows PS whereas the high temperature annealed (HTA) sample shows SG behavior. The Brillouin-like behavior of field cooled dc magnetization and apparently no frequency dependent peak shift in ac susceptibility for the LTA sample characterize it to be of ferromagneticlike whereas a kink in field cooled dc magnetization and a considerable amount (similar to 3 K) of frequency dependent peak shift in the ac susceptibility for the HTA sample characterize it to be of SG state. The magnetotransport properties show that the HTA sample is more semiconducting as compared to the LTA sample. This is interpreted in terms of the presence of isolated as well as coalescing metallic ferromagnetic clusters in the case of LTA sample. The magnetoresistance (MR) at 10 K for the HTA sample exhibits a huge value (similar to 65%) as compared to the LTA sample, and it monotonically decreases with the rise in temperature. Such a high value of MR in the case of HTA sample is strongly believed to be due to the spin dependent part of random potential distribution. Further, the slow decay of remnant magnetization with progress of time and the existence of hysteresis at higher temperatures (up to 200 K) in the case of LTA sample as compared to the HTA sample clearly unveil different magnetic states associated with them.
Resumo:
The need for special education (SE) is increasing. The majority of those whose problems are due to neurodevelopmental disorders have no specific aetiology. The aim of this study was to evaluate the contribution of prenatal and perinatal factors and factors associated with growth and development to later need for full-time SE and to assess joint structural and volumetric brain alterations among subjects with unexplained, familial need for SE. A random sample of 900 subjects in full-time SE allocated into three levels of neurodevelopmental problems and 301 controls in mainstream education (ME) provided data on socioeconomic factors, pregnancy, delivery, growth, and development. Of those, 119 subjects belonging to a sibling-pair in full-time SE with unexplained aetiology and 43 controls in ME underwent brain magnetic resonance imaging (MRI). Analyses of structural brain alterations and midsagittal area and diameter measurements were made. Voxel-based morphometry (VBM) analysis provided detailed information on regional grey matter, white matter, and cerebrospinal fluid (CSF) volume differences. Father’s age ≥ 40 years, low birth weight, male sex, and lower socio-economic status all increased the probability of SE placement. At age 1 year, one standard deviation score decrease in height raised the probability of SE placement by 40% and in head circumference by 28%. At infancy, the gross motor milestones differentiated the children. From age 18 months, the fine motor milestones and those related to speech and social skills became more important. Brain MRI revealed no specific aetiology for subjects in SE. However, they had more often ≥ 3 abnormal findings in MRIs (thin corpus callosum and enlarged cerebral and cerebellar CSF spaces). In VBM, subjects in full-time SE had smaller global white matter, CSF, and total brain volumes than controls. Compared with controls, subjects with intellectual disabilities had regional volume alterations (greater grey matter volumes in the anterior cingulate cortex bilaterally, smaller grey matter volume in left thalamus and left cerebellar hemisphere, greater white matter volume in the left fronto-parietal region, and smaller white matter volumes bilaterally in the posterior limbs of the internal capsules). In conclusion, the epidemiological studies emphasized several factors that increased the probability of SE placement, useful as a framework for interventional studies. The global and regional brain MRI findings provide an interesting basis for future investigations of learning-related brain structures in young subjects with cognitive impairments or intellectual disabilities of unexplained, familial aetiology.
Resumo:
3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
It is shown that a magnetic-pressure-dominated, supersonic jet which expands (or contracts) in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to take place, the effective reconnection time must be a fraction ɛ ⪉ 1 of the expansion time. The amount of energy dissipation is calculated, and it is concluded that magnetic energy dissipation could, in principle, power the observed synchrotron emission in extragalactic radio jets such as NGC 6251. However, this mechanism is only viable if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.
Resumo:
The Taylor hypothesis has provided a model for the relaxed magnetic configurations of not only laboratory plasmas, but also of astrophysical plasmas. However, energy dissipation is possible only for systems which depart from a strict Taylor state, and hence a parameter describing that departure must be introduced, when the Taylor hypothesis is used to estimate the dissipation. An application of the Taylor hypothesis to the problem of coronal heating provides an insight into this difficult problem. When particular sorts of footpoint motions put energy and helicity in the corona, the conservation of helicity puts a constraint on how much of the energy can be dissipated. However, on considering a random distribution of footpoint motions, this constraint gets washed away, and the Taylor hypothesis is probably not going to play any significant role in the actual calculation of relevant physical quantities in the coronal heating problem.
Resumo:
The equation of motion for a toroidal flux ring in a stellar convective envelope is derived, and the equilibrium of such a ring is considered. Necessary conditions for the stability of toroidal flux rings are derived, and results of stability calculations for a particular model of the meridional flow are presented. The motions of the flux rings when the rings are far from their equilibrium position or when equilibrium does not exist are considered. The results confirm the linear stability analysis, and show that in the absence of stable equilibrium, the rings move toward the solar surface along a trajectory which is parallel to the rotation axis. It is expected that viscosity will tend to reduce the rotational velocity difference between the flux ring and its surroundings, thus reducing the Coriolis force and altering the equilibrium. The storage time of toroidal flux rings is estimated, and some implications for the sun are discussed.
Resumo:
The article describes the synthesis, structure and magnetic investigations of a series of metal-organic framework compounds formed with Mn+2 and Ni+2 ions. The structures, determined using the single crystal X-ray diffraction, indicated that the structures possess two- and three-dimensional structures with magnetically active dimers, tetramers, chains, two-dimensional layers connected by polycarboxylic acids. These compounds provide good examples for the investigations of magnetic behaviour. Magnetic studies have been carried out using SQUID magnetometer in the range of 2-300 K and the behaviour indicates a predominant anti-ferromagnetic interactions, which appears to differ based on the M-O-C-O-M and/or the M-O-M (M = metal ions) linkages. Thus, compounds with carboxylate (Mn-O-C-O-Mn) connected ones, [C3N2H [Mn(H2O)''C6H3(COO)(3)''], I, [''Mn(H2O (3)''aEuroeC(12)H(8)O(COO)(2)'']center dot H2O, II, [''Mn(H2O)''aEuroeC(12)H(8)O(COO)(2)''], III, show simple anti-ferromagnetic behaviour. The compounds with Mn-O/OH-Mn connected dimer and tetramer units in [NaMn''C6H3(COO)(3)''], IV, [Mn-2(A mu(3)-OH) (H2O)(2)''C6H3(COO)(3)'']center dot 2H(2)O, V, show canted-antiferromagnetic and anti-ferromagnetic behaviour, respectively. The presence of infinite one-dimensional -Ni-OH-Ni- chains in the compound, [Ni-2(H2O)(A mu(3)-OH)(2)(C8H5NO4], VI, gives rise to ferromagnet-like behaviour at low temperatures. The compounds, [Mn-3''C6H3(COO)(3)''(2)], VII and [''Mn(OH)''(2)''C12H8O(COO)(2)''], VIII, have two-dimensional infinite -Mn-O/OH-Mn- layers with triangular magnetic lattices, which resemble the Kagome and brucite-like layer. The magnetic studies indicated canted-antiferromagnetic behaviour in both the cases. Variable temperature EPR and theoretical magnetic modelling studies have been carried out on selected compounds to probe the nature of the magnetic species and their interactions with them.
Resumo:
Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.
Resumo:
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.