972 resultados para lysing-bacterium
Resumo:
Using degenerate primers based on conserved regions of the UDP-glucose dehydrogenase (UDPGDH) gene, an initial 476-bp DNA fragment was amplified from the water-bloom forming cyanobacterium, Microcystis aeruginosa FACHB 905. TAIL-PCR and ligation-mediated PCR were used to amplify the flanking regions to isolate an about 2.5-kb genomic DNA fragment. Sequence analysis revealed an ORF encoding a putative 462 amino acid protein, designated Mud for Microcystis UDPGDH. The Mud amino acid sequence is closely related to UDPGDH sequences from cyanobacterium Synechocystis PCC6803 (73% identity, 81% similarity), and bacterium Bacillus subtilis (51% identity and 67% similarity). The cloned mud gene was expressed in Escherichia coli using the pGEX-4T-1 fusion expression vector system to generate a GST-Mud fusion protein that exhibited UDPGDH activity. The cytosolic fraction of M aeruginosa FACHB 905 was subjected to Western analysis with an anti-Mud antibody, which revealed a single band of approximately 49 kD, consistent with the deduced molecular mass of the enzyme. The Mud protein could thus be characterized as a UDP-glucose dehydrogenase, which was a key enzyme for polysaccharide synthesis and has, for the first time, been studied in algae.
Resumo:
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.
Resumo:
本文通过传统和现代微生物生态学方法,从土壤微生物数量、土壤底物诱导呼吸强度和微生物群落多样性角度,评价了长期污灌所致PAHs污染对土壤微生物特征的影响。结果发现沈抚灌区农田PAHs总量在表层为612.3-6362.81μg•kg-1干土,在亚表层为319.5-4318.51μg•kg-1干土。土壤微生物主要类群、功能群数量、微生物生物量碳和代谢商与土壤PAHs污染程度无明显相关性,土壤底物诱导呼吸强度和所试土壤酶与PAHs含量呈显著正相关,微生物商与PAHs含量呈显著负相关,可以作为土壤PAHs污染评价的敏感生化指标之一。污染稻田土壤细菌群落中优势菌群为β-和γ-变形细菌亚纲的成员,中度PAHs土壤的分支杆菌多样性指数较重度和轻度的略高,PAHs污染使一种或几种分支杆菌得到富集。长期污水灌溉造成土壤固氮细菌种群多样性降低,清水灌溉一段时间后,固氮细菌种群结构得到不同程度的恢复,但是,即使清灌不能使其种群结构得到完全恢复。 通过富集得到一株高效降解芘的细菌N12,经鉴定确认为分支杆菌。经10天培养菌株可将100mg•l-1芘降解97.84%。还可降解菲、苊、芴,不能降解萘、蒽和苯并[a]芘。污染土壤修复实验表明,单一接种菌剂对芘的降解率为57.42%,含N12的混合接种菌剂对芘的降解率为61.11%。
Resumo:
大气CO2浓度升高可以通过植物间接影响土壤生态系统。土壤生态系统的结构和功能改变将影响有机质矿化和营养物质循环,进而可能对CO2浓度升高产生正反馈或负反馈。微生物是土壤生态系统的主体,在对CO2浓度升高的反馈中起着至关重要的作用。本研究以开顶箱系统为平台,采用微生物分子生态学技术和现代酶学技术,通过对长期接受500 ppm CO2的红松幼树、长白赤松幼树和蒙古栎幼树非根际土壤连续两个生长季的测定,系统研究了高浓度CO2对温带森林土壤微生物群落的生物量和微生物活性的影响,检测了土壤微生物群落的结构和功能以及土壤化学性质变化,主要结论如下: (1)高浓度CO2处理提高了土壤有机碳含量。与对照组相比较,红松幼树土壤有机碳含量提高9.4%;长白赤松幼树土壤提高0.6%;蒙古栎幼树土壤提高1.3%。 (2)高浓度CO2处理使土壤磷酸酶(phosphatase)、几丁质酶(1,4-β-acetylglucosaminidase, 1,4-β-NAG)和多酚氧化酶(phenol oxidase)活性发生了显著变化,高浓度CO2使红松土壤 1,4-β-NAG活性提高7-25%,长白松土壤1,4-β-NAG平均活性降低14%,蒙古栎土壤1,4-β-NAG平均活性提高31%。 同时研究还发现,过氧化物酶(peroxidase)和多酚氧化酶(phenol oxidase)活性与微生物量碳和微生物量氮呈显著的正相关。相关分析还显示,土壤湿度与1,4-α-葡萄糖苷酶(1,4-α-glucosidase)活性、 微生物生物量碳和微生物生物量氮呈显著的正相关。 高浓度CO2在不同程度上改变了土壤转化酶活性和脱氢酶活性。高浓度CO2显著提高了红松和长白赤松土壤硝化酶活性;而显著降低反硝化酶活性。 (3)研究发现三种树土壤的真菌和细菌群落存在着季节性演替,并且高浓度CO2熏蒸处理使真菌群落结构发生了显著的变化,表现为一些种群优势度下降,另一些升高。虽然,细菌群落没有如真菌群落变化的明显,但研究中也发现高浓度CO2的确使个别细菌种群的优势度发生了显著改变。 亲缘关系与Calocybe carnea,Magmatodrilus obscurus密切的真菌是红松土壤优势种群,与Humicola fuscoatra关系相近的是长白松土壤的优势种群,并且此三种真菌的季节性变化不显著。研究发现高浓度CO2使红松土壤中亲缘关系与Pachyella clypeata,Cochlonema euryblastum,Lepiota cristata,Eimeriidae sp., Trichoderma sp.相近的种群的丰富度显著提高,使蒙古栎土壤中亲缘关系与Serendipita vermifera,Calocybe carnea种群丰富度显著下降,使蒙古栎土壤中与Candida sp.,Magmatodrilus obscurus和Pachyella clypeata亲缘关系密切种群的丰富度显著提高。 (4)三种幼树叶的原位分解培养429天结果显示,红松和长白松凋落物的β-葡萄糖苷酶(1,4-β-glucosidase)和木糖苷酶(1,4-β-xylosidase)活性随着分解而逐渐增加,而这两种酶在蒙古栎凋落物分解过程中保持相对恒定;高浓度CO2显著影响叶凋落物分解磷酸酶(phosphatase),纤维二糖酶(cellobiohydrolase), 几丁质酶(1,4-β-NAG),多酚氧化酶(phenol oxidase)和过氧化物酶(peroxidase)的活性。研究发现,凋落物的生物化学性质变化能引起分解的微生物群落发生变化,进而引起分泌的胞外酶活性变化,科学印证了大气CO2浓度升高“通过影响凋落物质量进而影响分解叶凋落物的微生物群落的结构和功能”的猜测。 不同凋落物之间酶活性差异显著,真菌和细菌群落结构也显著不同。序列与Hyphodiscus hymeniophilus亲缘关系密切的真菌和亲缘关系与Verrucomicrobia bacterium密切的细菌是长白松凋落分解的最优势种群,序列与Lophium mytilinum亲缘关系密切的真菌是红松凋落分解的最优势种群。 另外,研究还发现,高浓度CO2使参与分解红松凋落物Beta proteobacterium OS-15A亲缘关系相近的细菌种群和与Azospirillum amazonense亲缘关系相近的种群丰富度显著降低;使与Luteibactor rhizovicina亲缘关系相近的种群和与Luteibactor rhizovicina亲缘关系相近的种群显著提高。高浓度CO2使定殖于长白松凋落物上Hyphodiscus hymeniophilus亲缘关系相近的种群和与Bionectria pityrodes亲缘关系相近的种群显著提高,而使与Neofabraea malicorticis亲缘关系相近的种群和与Hyphodiscus hymeniophilus亲缘关系相近的种群显著下降。
Resumo:
本文介绍了从厌氧间歇膨胀光合反应器内的活性污泥中分离并鉴定的泥生绿菌(Chlorobium limicola Nadson)S1,它属严格厌氧光能自养型细菌,在有硫化物和少量碳酸氢盐存在下,有广泛利用有机物的能力,它的最适生长温度为28-30℃,最适生长PH为6.5-7.0,且含有氢化酶。因此,它能与甲烷发酵菌共存而共同作用,达到废水净化之目的。通过光照(2#反应器)和黑暗(1#反应器)对比实验,表明了在光照条件下即有泥生绿菌S1存在下,反应系统能更好地降低CODcr、BOD5 和提高CH4 含量,在四个负荷段的运行中,2#反应器在后三个负荷段的甲烷含量能稳定在91.6%而1#反应器为87%,2#反应器的二氧化碳含量为4.5%而1#反应器为8.8%,于28.35g/l.d的负荷下,2#反应器CODcr去除率达83.4%,BOD去除率达74.53%,分别较1#反应器高10.8%,6.4%。COD去除率提高了14%,BOD去除率提高了9.3%。本试验的试验条件为:白天自然光照,晚上电源光照,光照强度为1000-2500lux,通过连续动态运转,并以恒定的流速将废液注入反应器中,进水PH控制在6.5-7.2,反应器厌氧,恒温室温度控制在30±1℃。为使整个试验中同一水质条件下进行,进水采用化学合成培养基。This paper reports a Chlorobium Liwicola S1's isolation and identification. It is a strictly anaerobic and photosynthetic autotrophic bacterium. Along with sulfidedepondent CO2 assiwilaton,a few simple organic compounds can be photoassimilated. Acetate is most effectively used. Its best conditons of growth are 28-30℃,PH 6.5-7.0, and it contains hydrogenase. So it can live with methanefermentative bacteria in order to treat wastewater. At the same time, the treatment of wastwater using Chlorobium Limicola S1 with methane-fermontative bacteria under dark anaerobic and light anaerobic conditions is studied. In contrast with 1# reactor-darken, 2# reactor-illuminated can lossen wastewater's CODcr, BOD5 and on hance CH4 content better. In the test, 2# reactor's CH4 content is stable at 91.6%, but 1# reactor's is 87%. The CO2 content of 2# reactor is 4.5%, but 1# reactor's is 8.8%. When the load of teatment is 28.35g/l.d, the COD removal effficiency is 83.4% and the BOD removal efficiency is 74.53% in 2# reactor. They are separately 10.8%, 6.4% higher than 1# reactor's.
Resumo:
畜禽废水是农村水环境污染的主要来源之一,其处理的难点在于脱氮。传统生物脱氮法具有能耗高、需大量外加碳源等缺点,开发低成本、高效率的新型生物脱氮技术具有重要意义。 本研究将短程硝化反硝化和厌氧氨氧化两种脱氮新技术结合,让前者为后者创造去除可降解COD、降低总氮负荷、调整pH、调整氨氮和亚硝酸盐氮浓度比例等进水条件,而后者可在无需外加碳源的条件下进一步脱氮,二者结合可成为高氨氮、低C/N废水脱氮的新途径。 试验以低碳氮比猪场废水为研究对象,首先进行了短程硝化反硝化预处理研究,同时启动并运行调控厌氧氨氧化反应器,最后以经过短程硝化反硝化预处理的猪场废水为进水,进行厌氧氨氧化脱氮考察。实验表明:(1)短程硝化反硝化作为厌氧氨氧化的预处理工序是可行的。猪场废水通过短程硝化反硝化,可以达到基本去除可生化COD、部分脱氮、控制出水氨氮和亚硝酸盐氮浓度之比在1︰1左右、pH在7.5~8.0的目的, COD和总氮平均去除率分别为64.3%、49.1%,出水可达到厌氧氨氧化反应的进水要求。(2)采用模拟废水启动厌氧氨氧化反应器,经过5个月左右的运行调控,反应器启动成功并稳定运行,最高总氮去除率为87.1%,总氮容积去除率最高达到0.14kg/m3.d;整个稳定阶段,氨氮、亚硝酸盐氮、硝酸盐氮的变化量之比为1︰1.21︰0.33。(3)经过短程硝化反硝化预处理的猪场废水厌氧氨氧化脱氮效果稳定,氨氮、亚硝酸盐氮、总氮、COD的平均去除率分别为93.0%、99.4%、84.6%、18.1%,处理效果与模拟废水处理系统相比无明显变化。(4)经过短程硝化反硝化预处理后,猪场废水中残留有机物成分在厌氧氨氧化反应过程中无显著变化,主要为酯类和烷烃类物质;残留有机物对厌氧氨氧化效果无明显影响。(5)采用PCR技术进行特殊功能菌种检测,结果表明模拟废水处理系统和猪场废水处理系统的菌群中均含有厌氧氨氧化菌和好氧硝化菌;通过blast比对,厌氧氨氧化菌扩增序列与未培养的Planctomycetales菌和Candidatus Brocadia fulgida菌16S rRNA部分序列相似性分别为95%、90%。(6)MPN法菌种计数结果显示,模拟废水处理系统和猪场废水处理系统的菌群中均含有硝化细菌、亚硝化细菌和少量反硝化菌,实验条件下的微生物系统是一个厌氧氨氧化菌与好氧硝化菌、反硝化菌共存的系统。 Poultry wastewater is one of the main source of water pollution in rural areas,and nitrogen removal is the most difficult part in treating poultry wastewater. There are some disadvantages in traditional nitrogen removal, such as high energy consumption and more additional organic carbon. It is important to develop ecolomical and efficient technologyies. Shortcut nitricfication/denitrification, as a pretreatment process, was combined with Anammox in this research, so that part of total nitrogen and most degradable COD could be removed by the former, and further nitrogen removal could be implemented by the latter. The combination of the two technologies was a new approach to treat wastewater with high ammonium and low C/N. Piggery wastewater with low C/N was treated in lab-scale experiment. Firstly, shortcut nitrification/denitrification was investigated, and Anammox reactor was started up successfully at the same time. Then piggery wastewater after pretreatment was treated by Anammox. The results showed :(1) It was feasible to take nitrification/denitrification as the pretreatment process of Anammox. By using this process, part of total nitrogen and COD were removed, the ratio of ammonium and nitrite reached around 1︰1 and the pH was about 7.8, which were favorable for Anammox. The average removal percentage of COD and total nitrogen were about 64.3% and 49.1%, respectively. (2) Simulated wastewater was used to start up Anammox reactor. The reactor was started up successfully within 5 months and stable performance was achieved. The highest nitrogen removal reached 87.1% and the biggest volumetric total nitrogen removal rate reached 0.14kg/m3.d. The average ratio of ammonium, nitrite and nitrate was 1:1.21:0.33. (3)Taking the effluent of shortcut nitrification/denitrification as the influent, the nitrogen removal efficiency of Anammox was stable, and the the average removal percentage of ammonium, nitrite, total nitrogen and COD were 93.0%, 99.4% , 84.6% and 18.1%, respectively, which had little difference with that by using simulated wastewater..(4) After pretreatment, the residual organic carbon in piggery wastewater showed no obvious change during the Anammox process, and the main organic compounds were saturated hydrocarbon and ester, which had no obvious negative effect on Anammox process.(5) By PCR technology, the existence of Anammox bacteria was confirmed and the aerobic nitrifying bacteria was found to coexist as well. The result of blast showed that the identities of Anammox bacterium to part of 16S rRNA sequence of uncultured Planctomycetales bacterium and Candidatus Brocadia fulgida bacterium were 95% and 90%, respectively.(6)By MPN method, nitrite oxidizer, ammonium oxidizer and denitrification bacteria were detected in both simulated and piggery wastewater treatment system of Anammox, and the microorganism system was composed of Anammox bacteria,aerobic bacteria and denitrification bacteria together.
Resumo:
本文主要研究了泸州老窖古酿酒作坊内外环境空气真菌和空气细菌的群落结构和分布特征。结果如下: 作坊内外环境空气微生物浓度差别显著,并随季节变换而变化,春、夏季微生物浓度较高,秋、冬季较低,空气真菌在夏季达到最高,细菌在春季最高。 古作坊内外环境检测到的真菌均为16 属,但优势菌属不同,作坊外的优势菌属为青霉属(Penicillium)、曲霉属(Aspergillus)、无孢菌(non-sporing)、枝孢霉属(Cladosporium)和链格孢属(Alternaria);而作坊内优势菌属为曲霉属、青霉属、酵母菌(Yeast)、无孢菌,作坊内还含有较高浓度的根霉属(Rhizopus)、毛霉属(Mucor)、短梗霉属(Aureobasidiu),枝孢霉属和链格孢属等,曲霉属、酵母菌、根霉属、毛霉属为古酿酒作坊重要的酿酒真菌,青霉属、链格孢属为酿酒不利菌群。对古作坊内曲霉属进行了初步鉴定,主要是小冠曲霉(A.cristatellus)、米曲霉(A.oryzae)、黑曲霉(A.niger)和白曲霉(A.cadidus)。 空气细菌10 属21 种,作坊内外环境的优势菌属均为芽孢杆菌属(Bacillus)、微球菌属(Micrococcus)、葡萄球菌属(Staphylococcus)、假单胞菌属(Pseudomonad),其中芽孢杆菌属在作坊内占有绝对的优势,浓度比在40℅以上,是古酿酒作坊重要的酿酒细菌,另外还检测到较高浓度的乳酸杆菌(lactobucillus),这类菌容易使酒味发涩发苦,为酿酒不利菌。 作坊内外环境空气微生物表现出明显的交流现象。作坊内,青霉属、枝孢霉属、链格孢属、葡萄球菌属等杂菌占有一定比例;而在作坊外,芽孢杆菌属、曲霉属、根霉属(Rhizopus)、酵母菌等处于相对较高水平,绿化环境较好的营沟头作坊内的短梗霉属,枝孢霉属和链格孢属等杂菌含量低于什字头和新街子作坊。 The community structure and distribution characteristic of airborne microbes was investigated in ancient brewage workshops of luzhoulaojiao. The results are as follows: The concentration of airborne microbes was different in interior and exterior environment of ancient workshops, and also varied by seasons. microbial concentration was higher in spring and summer, and lower in fall and winner. The highest levels of airborne bacteria was in spring, but the fungal’s in summer. The identified genus of fungi were 16 in interior and exterior environment of the ancient workshops. But the dominant genus were different , The advantage genus in the interior were Aspergillus, Yeasts, Penicillum and Nonsporing and in the exterior were Penicillum, Nonsporing, Cladosporium, Aspergillus and Aureobasidiu. Rhizopus ,mucor, Aureobasidiu, Cladosporium, Alternaria and all also were at a higher level. Among these, Aspergillus, Yeasts, Rhizopus ,mucor are important vintage flora . Penicillum, Alternaria do harm to vintage. Aspergillus of ancient workshops was identified , the preponderant aspergillus species were A.cristatellus, A.oryzae, A.niger and A.cadidus in ancient brewage workshops. 10 genus 21 species bacteria were identified, the advantage genuses among the interior and exterior of the three workshops were bacillus, microccus, Staphylococcus Pseudomonas. Bacillus, which account for beyond 40℅ of the total bacteria concentration in all sampling pots, was the most dominant genus. Lactobacillus was identified at a high level in ancient workshops, it makes spirit taste bitter and astringent. So it is not a kind of good bacterium for vintage. The fungus in the interior and exterior atmosphere characterized intercommunion phenomenon. Obviously, the concentration of profitless fungus such as Penicillum, Cladosporium, Alternaria appeared in the interior, and the fungus such as Bacillus, Aspergillus, Rhizopus and Yeasts in the exterior were at a relatively high level. the harmfull fungus in yinggoutou workshops such as Aureobasidiu, Cladosporium, Alternaria and all were lower than shenzitou and xinjiezi workshops.
Resumo:
近年来各种环境污染事故频发,据统计仅2001~2003年间,发生的各类环境污染事故就高达5606次,其中水污染事故3235次,占全部的57.7%。这些事故不仅给人民生命财产造成巨大损失,也给生态环境造成严重的破坏。因此开发安全高效的应急处理技术迫在眉睫。本研究以筛选高效苯胺降解菌为基础,通过对高效菌降解性能的研究指导将高效菌作为功能郡主投加到已有生物处理系统强化应急处理苯胺突发污染事故废液,取得了良好的效果。 苯胺高效降解菌AN-P1为红球菌(Rhodococcus sp.),其通过间位途径降解苯胺,AN-P1利用苯胺生长和降解的最佳pH为6,最适浓度为2000 mg/L,最适温度为30 ℃,最佳接种量为0.3‰。AN-P1降解含500 mg/L、1000 mg/L、2000 mg/L苯胺的培养物分别经过28 h、24 h、32 h降解,出水苯胺含量能达到《污水综合排放标准》(GB8978-1996)一级标准。但由于苯胺降解过程中释放了大量氨氮,出水氨氮仍较高未能达标排放。而常规SBR系统应急处理效果较差,苯胺和COD去除率均低于10%,出水未能达标排放。活性碳吸附后的回收和后续处理也会带来操作不变和二次污染问题,且处理后出水往往难于达标排放,尚需进行进一步处理。 生物处理系统应急处理后恢复运行处理效果监测和PCR-DGGE图谱分析显示,用AN-P1菌强化应急处理系统后不仅能快速高效的去除苯胺,而且可以有效保障处理系统对污染物的净化性能,有效的保护系统中的功能微生物免受苯胺毒害。 研究结果表明,从实际处理效果、对原有生物系统性能保护及实际应用操作等多方面考虑,用AN-P1菌强化应急处理苯胺突发污染事故在技术上都是可行的。本研究为应急处理苯胺突然污染事故废液提供了新的方法。 Recent years, environment pollution accidents happened frequently, the data showed that there are 5606 accidents between 2001 and 2003, including 3235 water environment accidents, which is 57.7% of all. These accedents not only caused money lost and life lost but also caused serious damage to the ecologicl environment. So exploring highly-effective and secure methods to solve these accidents is an urgent mission. We screened a highly-effective aniline-degrading bacterium and did some researches on its ability to degrade aniline, in order to guide the emergency treatment of aniline containing wastewater that caused by sudden accident pollution with bioaugmentation. A highly-effective aniline-degrading bacterium AN-P1 was isolate and characterized as Rhodococcus sp. It degrades aniline through meta-cleavage pathway. The optimal pH and temperature for cell growth and aniline degradation were 6 and 30 ℃, respectively, and the opitimal concentration of aniline was 2000 mg/L, the optimal inoculation amount was 0.3‰.It took bacterium AN-P1 only 18 h, 24 h and 32 h, respectively, for the treatment of MSB containing 500 mg/L, 1000 mg/L, 2000 mg/L aniline to meet the first grade of national some of the NH4+-N which caused by aniline degradation. It took bacterium AN-P1 only 10 h, 20 h and 32 h, respectively, for the treatment of wastewater containing 500 mg/L, 1000 mg/L, 2000 mg/L aniline to meet the first grade of national integrated wastewater discharge standard. The bacterium AN-P1 can also remove some of the NH4+-N which caused by aniline degradation. It took bacterium AN-P1 only 10 h, 20 h and 32 h, respectively, for the treatment of wastewater containing 500 mg/L, 1000 mg/L, 2000 mg/L aniline to meet the first grade of national integrated wastewater discharge standard. By combing AN-P1 with regular SBR system, it took only 36 h for the emergency treatment of wastewater containing 2000 mg/L aniline under simulating engineering conditions to meet the discharge standard. While the NH4+-N of effluent can not meet the standard because of the high amount NH4+-N caused by aniline degradation. The regular SBR system was not good at aniline and COD removal. The removal efficiency of which are less than 10%. It cost 67.8 g activated carbon to absorbed 1000 mg aniline. It is inconvenient to transport and use it for the emergency treatment of aniline when the sudden pollution accident happened. Meanwhile, it was complex ad hard to recycle the activated carbon and treat the aniline wastewater get from activated carbon recycling too. Hard to meet the effluent standard was also a problem of activated carbon absorption method. According to the PCR-DGGE profile and removal efficiency of pollutants and COD when the systerm recover from emergency treatment, AN-P1 can efficiently protect the microbial community of regular activated sludge system against the aniline. It proved that combing AN-P1 with regular biological system is a feasible strategy for emergency treatment of aniline sudden pollution accident. The research offered a new way for emergency treatment of aniline sudden pollution accident.
Resumo:
目的: 利用重离子辐照技术选育出对农作物具有更好防病促生作用的突变生防菌株,探讨利用突变株诱导黄瓜对枯萎病菌产生抗病性的作用机制。 材料与方法: 采用兰州重离子研究装置(HIRFL)加速的碳离子束辐照生防菌BJ1,测定抑菌能力、抑菌谱,确定对该菌株最适宜的离子辐照参数,选育突变菌株。对突变株进行室内盆栽和田间防病促生试验。对原菌株和突变株进行16SrDNA和生理生化反应鉴定,确定分类地位。以突变株为对象进行诱导黄瓜对枯萎病菌产生抗病性的实验。 结果与结论: 1.重离子辐照生防菌BJ1的存活曲线随剂量的增加,呈先降后升再降的马鞍型变化,但是由于离子的能量不同也存在差异,表现为在相同的剂量下,能量越低其能量沉积效应即传能线密度(LET)越大,致死率越高。诱变效果随LET的不同也不尽相同,高LET时的突变株不但有更广的抑菌谱而且抑菌活性较对照也有比较大的提高,在存活率较高的条件下,低剂量就可以得到较多的突变体,有利于筛选优良的正突变体; 2.对于生防菌BJ1最适宜的12C6+辐照参数应选择剂量在200-400Gy,LET为60keV/m范围可筛选获得抑菌活性较高的菌株; 3.通过12C辐照结合抑菌试验最终获得了突变菌株154,该突变株通过20代的移植能够稳定遗传; 4.利用突变株154对黄瓜枯萎病菌进行室内盆栽促生试验,结果表明突变株154能够使促进黄瓜幼苗的生长发育,同时提高了黄瓜植株的抗病性,在对黄瓜枯萎病的防治效果上经154处理的达到了70.34%,高于原菌株和农药防治的效果; 5.传统的生理生化特征结合16SrDNA同源性比对的方法,对菌株BJ1及其突变株154的鉴定结果表明二者均属枯草芽孢杆菌,亲缘关系近,但是突变株154生化测定不同于原菌株,表现为抗菌物质的产量较高; 6.BJ1、154都可在番茄、当归和黄芪的根部有效的定殖,适应根部的生长环境, 并且154的定殖能力稍强; 7.BJ1、154防治当归麻口病效果较好,防治效果最好的是154的20倍液浸苗,防效为82.6%;BJ1的20倍液浸苗与154的10倍液浸苗对麻口病防治效果差别不大,防效分别为78.3%、75.62%;其余处理防效低于62%。 8.BJ1和154处理黄瓜幼苗后,植物体内一系列与抗病性有关的保护酶的活性均有不同程度的提高,因而可认为这些酶活性的改变与生防菌诱导的黄瓜对枯萎病的抗性可能有一定的相关性
Resumo:
Immobilized with PVA,sodium alginate and activated carbon,both Zoogloea sp. and Fusarium sp.strains could degrade phenanthrene and pyrene efficiently.The optimal carrier was made of 100ρ·g -1 L PVA,5 sodium alginateρ·g -1 L and 50 activated carbon ρ·g -1 L.The degradation rates of phenanthrene and pyrene in 10 days were 87.48% and 75.34% by the immobilized bacterium,37.04% and 20.85% higher than those by the free bacterium,and the rates in 15 days were 84.36% and 74.87% by the immobilized fungus,5.35% and 11.23% higher than those by the free fungus.
Resumo:
Sulfide: quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the "as-purified,'' substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 angstrom, respectively. The structure is composed of 2 Rossmann domains and 1 attachment domain, with an overall monomeric architecture typical of disulfide oxidoreductase flavoproteins. A. aeolicus SQR is a surprisingly trimeric, periplasmic integral monotopic membrane protein that inserts about 12 angstrom into the lipidic bilayer through an amphipathic helix-turn-helix tripodal motif. The quinone is located in a channel that extends from the si side of the FAD to the membrane. The quinone ring is sandwiched between the conserved amino acids Phe-385 and Ile-346, and it is possibly protonated upon reduction via Glu-318 and/or neighboring water molecules. Sulfide polymerization occurs on the re side of FAD, where the invariant Cys-156 and Cys-347 appear to be covalently bound to polysulfur fragments. The structure suggests that FAD is covalently linked to the polypeptide in an unusual way, via a disulfide bridge between the 8-methyl group and Cys-124. The applicability of this disulfide bridge for transferring electrons from sulfide to FAD, 2 mechanisms for sulfide polymerization and channeling of the substrate, S2-, and of the product, S-n, in and out of the active site are discussed.
Resumo:
Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2 ',3-epoxy-1 ',3 '-heptadienyl)-6-hydroxy- 5-(3-methyl-2-butenyl) benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin ( 6, also known as cladosporin), 5 '-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4 '-hydroxyasperentin (9), and 5 '-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (H-1, C-13, H-1-H-1 COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.
Resumo:
V134, a marine isolate of the Vibrio genus, was found to produce a new beta-agarase of the GH16 family. The relevant agarase gene agaV was cloned from V134 and conditionally expressed in Escherichia coli. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were around 40 degrees C and 7.0. AgaV was demonstrated to be useful in two aspects: first, as an agarolytic enzyme, the purified recombinant AgaV could be employed in the recovery of DNA from agarose gels; second, as a secretion protein, AgaV was explored at the genetic level and used as a reporter in the construction of a secretion signal trap which proved to be a simple and efficient molecular tool for the selection of genes encoding secretion proteins from both gram-positive and gram-negative bacteria.
Resumo:
V134, a marine isolate of the Vibrio genus, was found to produce a new beta-agarase of the GH16 family. The relevant agarase gene agaV was cloned from V134 and conditionally expressed in Escherichia coli. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were around 40 degrees C and 7.0. AgaV was demonstrated to be useful in two aspects: first, as an agarolytic enzyme, the purified recombinant AgaV could be employed in the recovery of DNA from agarose gels; second, as a secretion protein, AgaV was explored at the genetic level and used as a reporter in the construction of a secretion signal trap which proved to be a simple and efficient molecular tool for the selection of genes encoding secretion proteins from both gram-positive and gram-negative bacteria.
Resumo:
To determine the effects of pretreatment on hydrogen production and the hydrogen-producing microbial community, we treated the sludge from the intertidal zone of a bathing beach in Tianjin with four different pretreatment methods, including acid treatment, heat-shock, base treatment as well as freezing and thawing. The results showed that acid pretreatment significantly promoted the hydrogen production by sludge and provided the highest efficiency of hydrogen production among the four methods. The efficiency of the hydrogen production of the acid-pretreated sludge was 0.86 +/- 0.07 mol H-2/mol glucose (mean +/- S.E.), whereas that of the sludge treated with heat-shock, freezing and thawing, base method and control was 0.41 +/- 0.03 mol H-2/mol glucose, 0.17 +/- 0.01 mol H-2/mol glucose, 0.11 +/- 0.01 mol H-2/mol glucose and 0.20 +/- 0.04 mol H-2/mol glucose, respectively. The result of denaturing gradient gel electrophoresis (DGGE) showed that pretreatment methods altered the composition of the microbial community that accounts for hydrogen production. Acid and heat pretreatments were favorable to enrich the dominant hydrogen-producing bacterium, i.e. Clostridium sp., Enterococcus sp. and Bacillus sp., However, besides hydrogen-producing bacteria, much non-hydrogen-producing Lactobacillus sp. was also found in the sludge pretreated with base, freezing and thawing methods. Therefore, based on our results, we concluded that, among the four pretreatment methods using acid, heat-shock, base or freezing and thawing, acid pretreatment was the most effective method for promoting hydrogen production of microbial community. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.