949 resultados para low dose irradiation
Resumo:
OBJECTIVES To find the best pairing of first and second reader at highest sensitivity for detecting lung nodules with CT at various dose levels. MATERIALS AND METHODS An anthropomorphic lung phantom and artificial lung nodules were used to simulate screening CT-examination at standard dose (100 mAs, 120 kVp) and 8 different low dose levels, using 120, 100 and 80 kVp combined with 100, 50 and 25 mAs. At each dose level 40 phantoms were randomly filled with 75 solid and 25 ground glass nodules (5-12 mm). Two radiologists and 3 different computer aided detection softwares (CAD) were paired to find the highest sensitivity. RESULTS Sensitivities at standard dose were 92%, 90%, 84%, 79% and 73% for reader 1, 2, CAD1, CAD2, CAD3, respectively. Combined sensitivity for human readers 1 and 2 improved to 97%, (p1=0.063, p2=0.016). Highest sensitivities--between 97% and 99.0%--were achieved by combining any radiologist with any CAD at any dose level. Combining any two CADs, sensitivities between 85% and 88% were significantly lower than for radiologists combined with CAD (p<0.03). CONCLUSIONS Combination of a human observer with any of the tested CAD systems provide optimal sensitivity for lung nodule detection even at reduced dose at 25 mAs/80 kVp.
Resumo:
PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Resumo:
OBJECTIVE Cochlear implants (CI) are standard treatment for prelingually deafened children and postlingually deafened adults. Computed tomography (CT) is the standard method for postoperative imaging of the electrode position. CT scans accurately reflect electrode depth and position, which is essential prior to use. However, routine CT examinations expose patients to radiation, which is especially problematic in children. We examined whether new CT protocols could reduce radiation doses while preserving diagnostic accuracy. METHODS To investigate whether electrode position can be assessed by low-dose CT protocols, a cadaveric lamb model was used because the inner ear morphology is similar to humans. The scans were performed at various volumetric CT dose-indexes CTDIvol)/kV combinations. For each constant CTDIvol the tube voltage was varied (i.e., 80, 100, 120 and 140kV). This procedure was repeated at different CTDIvol values (21mGy, 11mGy, 5.5mGy, 2.8mGy and 1.8mGy). To keep the CTDIvol constant at different tube voltages, the tube current values were adjusted. Independent evaluations of the images were performed by two experienced and blinded neuroradiologists. The criteria diagnostic usefulness, image quality and artifacts (scaled 1-4) were assessed in 14 cochlear-implanted cadaveric lamb heads with variable tube voltages. RESULTS Results showed that the standard CT dose could be substantially reduced without sacrificing diagnostic accuracy of electrode position. The assessment of the CI electrode position was feasible in almost all cases up to a CTDIvol of 2-3mGy. The number of artifacts did not increase for images within this dose range as compared to higher dosages. The extent of the artifacts caused by the implanted metal-containing CI electrode does not depend on the radiation dose and is not perceptibly influenced by changes in the tube voltage. Summarizing the evaluation of the CI electrode position is possible even at a very low radiation dose. CONCLUSIONS CT imaging of the temporal bone for postoperative electrode position control of the CI is possible with a very low and significantly radiation dose. The tube current-time product and voltage can be reduced by 50% without increasing artifacts. Low-dose postoperative CT scans are sufficient for localizing the CI electrode.
Resumo:
External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^
Resumo:
With continuous new improvements in brachytherapy source designs and techniques, method of 3D dosimetry for treatment dose verifications would better ensure accurate patient radiotherapy treatment. This study was aimed to first evaluate the 3D dose distributions of the low-dose rate (LDR) Amersham 6711 OncoseedTM using PRESAGE® dosimeters to establish PRESAGE® as a suitable brachytherapy dosimeter. The new AgX100 125I seed model (Theragenics Corporation) was then characterized using PRESAGE® following the TG-43 protocol. PRESAGE® dosimeters are solid, polyurethane-based, 3D dosimeters doped with radiochromic leuco dyes that produce a linear optical density response to radiation dose. For this project, the radiochromic response in PRESAGE® was captured using optical-CT scanning (632 nm) and the final 3D dose matrix was reconstructed using the MATLAB software. An Amersham 6711 seed with an air-kerma strength of approximately 9 U was used to irradiate two dosimeters to 2 Gy and 11 Gy at 1 cm to evaluate dose rates in the r=1 cm to r=5 cm region. The dosimetry parameters were compared to the values published in the updated AAPM Report No. 51 (TG-43U1). An AgX100 seed with an air-kerma strength of about 6 U was used to irradiate two dosimeters to 3.6 Gy and 12.5 Gy at 1 cm. The dosimetry parameters for the AgX100 were compared to the values measured from previous Monte-Carlo and experimental studies. In general, the measured dose rate constant, anisotropy function, and radial dose function for the Amersham 6711 showed agreements better than 5% compared to consensus values in the r=1 to r=3 cm region. The dose rates and radial dose functions measured for the AgX100 agreed with the MCNPX and TLD-measured values within 3% in the r=1 to r=3 cm region. The measured anisotropy function in PRESAGE® showed relative differences of up to 9% with the MCNPX calculated values. It was determined that post-irradiation optical density change over several days was non-linear in different dose regions, and therefore the dose values in the r=4 to r=5 cm regions had higher uncertainty due to this effect. This study demonstrated that within the radial distance of 3 cm, brachytherapy dosimetry in PRESAGE® can be accurate within 5% as long as irradiation times are within 48 hours.
Resumo:
When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.
Resumo:
The conventional approach to cytotoxic T-lymphocyte (CTL) induction uses maximal antigen concentration with the intent of eliciting more CTL. However, the efficacy of this approach has not been systematically explored with regard to the quality of the CTLs elicited or their in vivo functionality. Here, we show that a diametrically opposite approach elicits CTLs that are much more effective at clearing virus. CTLs specific for a defined peptide epitope were selectively expanded with various concentrations of peptide antigen. CTLs generated with exceedingly low-dose peptide lysed targets sensitized with > 100-fold less peptide than CTLs generated with high-dose peptide. Differences in expression of T-cell antigen receptors or a number of other accessory molecules did not account for the functional differences. Further, high-avidity CTLs adoptively transferred into severe combined immunodeficient mice were 100- to 1000-fold more effective at viral clearance than the low-avidity CTLs, despite the fact that all CTL lines lysed virus-infected targets in vitro. Thus, the quality of CTLs is as important as the quantity of CTLs for adoptive immunotherapy, and the ability to kill virally infected targets in vitro is not predictive of in vivo efficacy, whereas the determinant density requirement described here is predictive. Application of these principles may be critical in developing effective adoptive cellular immunotherapy for viral infections and cancer.
Resumo:
Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.
Resumo:
Ultra-low picomolar concentrations of the opioid antagonists naloxone (NLX) and naltrexone (NTX) have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse dorsal root ganglion (DRG) neurons, whereas higher nanomolar concentrations antagonize excitatory and inhibitory opioid functions. Pretreatment of naive nociceptive types of DRG neurons with picomolar concentrations of either antagonist blocks excitatory prolongation of the Ca(2+)-dependent component of the action potential duration (APD) elicited by picomolar-nanomolar morphine and unmasks inhibitory APD shortening. The present study provides a cellular mechanism to account for previous reports that low doses of NLX and NTX paradoxically enhance, instead of attenuate, the analgesic effects of morphine and other opioid agonists. Furthermore, chronic cotreatment of DRG neurons with micromolar morphine plus picomolar NLX or NTX prevents the development of (i) tolerance to the inhibitory APD-shortening effects of high concentrations of morphine and (ii) supersensitivity to the excitatory APD-prolonging effects of nanomolar NLX as well as of ultra-low (femtomolar-picomolar) concentrations of morphine and other opioid agonists. These in vitro studies suggested that ultra-low doses of NLX or NTX that selectively block the excitatory effects of morphine may not only enhance the analgesic potency of morphine and other bimodally acting opioid agonists but also markedly attenuate their dependence liability. Subsequent correlative studies have now demonstrated that cotreatment of mice with morphine plus ultra-low-dose NTX does, in fact, enhance the antinociceptive potency of morphine in tail-flick assays and attenuate development of withdrawal symptoms in chronic, as well as acute, physical dependence assays.
Resumo:
Este estudo possui duas partes distintas: 1. in vivo (randomizado e longitudinal) que teve como objetivo avaliar protocolos de tratamento para hipersensibilidade dentinária com laser de baixa potência (com diferentes dosagens), laser de alta potência e agente dessensibilizante, por um período de 12 e 18 meses; e 2. in vitro que teve como objetivo analisar a perda de estrutura de dois dentifrícios distintos (Colgate Total 12 e Colgate Pró Alívio) e analisar a permeabilidade dentinária dos tratamentos da etapa 01, associados aos dentifrícios, após diferentes ciclos de abrasão. Na parte in vivo, as lesões cervicais não cariosas de 32 voluntários, previamente submetidos aos critérios de elegibilidade ou exclusão, foram divididas em nove grupos (n=10): G1: Gluma Desensitizer (Heraeus Kulzer), G2: Laser de baixa potência com baixa dosagem (Photon Lase, DMC) (três pontos de irradiação vestibulares e um ponto apical: 30 mW, 10 J/cm2, 9 seg por ponto com o comprimento de onda de 810nm). Foram realizadas três sessões com um intervalo de 72 horas), G3: Laser de baixa potência com alta dosagem (um ponto cervical e um ponto apical: 100 mW, 90 J/cm2, 11 seg por ponto com o comprimento de onda de 810nm. Foram realizadas três sessões com um intervalo de 72 horas), G4: Laser de baixa potência com baixa dosagem + Gluma Desensitizer, G5: Laser de baixa potência com alta dosagem + Gluma Desensitizer, G6: Laser de Nd:YAG (Power LaserTM ST6, Lares Research®), em contato com a superfície dental: 1,0W, 10 Hz e 100 mJ, ? 85 J/cm2, com o comprimento de onda de 1064nm, G7: Laser de Nd:YAG + Gluma Desensitizer, G8: Laser de Nd:YAG + Laser de baixa potência com baixa dosagem, G9: Laser de Nd:YAG + Laser de baixa potência com alta dosagem. O nível de sensibilidade de cada voluntário foi avaliado através da escala visual analógica de dor (VAS) com auxílio do ar da seringa tríplice e exploração com sonda após 12 e 18 meses do tratamento. Na parte 02, in vitro, foram utilizados terceiros molares humanos não irrompidos e recém-extraídos. Todos foram limpos e tiveram suas raízes separadas das coroas. As raízes foram seccionadas em quadrados de dentina com dimensões de 4x4x2 mm, os quais foram embutidos em resina Epoxi e devidamente polidos até uma curvatura de 0,3 ?m, analisados em perfilometria ótica. Estes foram imersos em solução de EDTA 17% por 2min para abertura dos túbulos e armazenados em uma solução de Soro Fetal Bovino diluído em salina tamponada com fosfato. Os espécimes foram divididos aleatoriamente em 12 grupos (n=10) G1: Sem tratamento de superfície, sem dentifrício; G2: Nd:YAG/sem dentifrício; G3: Gluma/sem dentifrício; G4: Nd:YAG + Gluma/sem dentifrício; G5: Sem tratamento de superfície/Colgate Total 12; G6: Nd:YAG/Colgate Total 12; G7: Gluma/Colgate Total 12; G8: Nd:YAG + Gluma/Colgate Total 12; G9: Sem tratamento de superfície/Colgate Pró Alívio; G10: Nd:YAG/Colgate Pró Alívio; G11: Gluma/Colgate Pró Alívio; G12: Nd:YAG + Gluma/Colgate Pró Alívio. Em seguida, as superfícies receberam a aplicação de fitas adesivas nas duas margens, mantendo uma área central de teste exposta de 4 x 1 mm, onde foram realizados os tratamentos de superfície e os ciclos de abrasão correspondentes a 1, 7, 30 e 90 dias de escovação (52 ciclos, 210 segundos de contato com o slurry; 361 ciclos, 1470 segundos de contato com o slurry; 1545 ciclos, 6300 segundos de contato com o slurry; 4635 ciclos, 18900 segundos de contato com o slurry, respectivamente). A cada etapa de abrasão, foi realizada análise em Perfilometria Ótica. Para as analises de permeabilidade e Microscopia Eletrônica de Varredura, foram utilizadas amostras circulares de 6 mm de diâmetro e 1 mm de espessura de dentina obtidas das coroas dentais. Estas foram divididas aleatoriamente nos mesmos grupos já descritos anteriormente, sendo que 120 espécimes foram utilizados para permeabilidade (n=10) e 36 para MEV (n=3). Ambas as análises foram realizadas após imersão no EDTA; após tratamentos para a sensibilidade; pós 1 dia, 7 dias, 30 dias e 90 dias de escovação. Após análise estatística pode-se concluir que, in vivo, todos os tratamentos foram eficazes para a redução da hipersensibilidade dentinária. Ainda que o nível da sensibilidade dos pacientes aumentou numericamente, estes não são considerados estatisticamente diferentes a partir de 12 meses. Portanto, até a avaliação de 18 meses, podemos concluir que não houve um aumento na sensibilidade dentinária desde a sua diminuição pós-tratamento. In vitro, pode-se concluir que todos os tratamentos foram capazes de diminuir a permeabilidade dentinária. O dentifrício Total 12 apresentou-se como o mais abrasivo em comparação com o dentifrício Pro Alivio, pois este último promoveu uma perda de estrutura menor, porém ambos não apresentaram aumento na permeabilidade nos tempos de escovação. As microscopias eletrônicas de varredura mostram a formação da smear layer, obliterando os túbulos para ambos os dentifricios. Como conclusão, pode-se afirmar que todos os agentes dessensibilizantes foram efetivos, mesmo apresentando estratégias de ação diferentes. Os dentifrícios são igualmente interessantes para o uso caseiro por ocasionarem oclusão tubular e a associação de tratamentos (caseiro e de consultório) parece ser uma alternativa eficaz no tratamento da hipersensibilidade dentinária.
Resumo:
The ractiolysis of a poly(ethylene-co-propylene), Elpro grade P 750 J, marketed by Thai Polypropylene Co. Ltd. for the manufacture of medical goods, was investigated at ambient temperature and melt rheology measured. The roles of calcium stearate, blended with the Elpro as a processing aid, and dioctyl phthalate (DOP), added in various amounts as a radical scavenger, were assessed. Following radiolysis, G' and the viscosity of the polymer melts at 453 K both decreased with increasing radiation dose, even when the mobilizer was present. The results indicated that although the DOP did scavenge radicals, it did not protect the polymer from net chain scission in a low-dose regimen. The value of (G(S) - 4G(X)) was approximately 0.6-0.7. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Background: Bacterial endotoxin is a potently inflammatory antigen that is abundant in the human gut. Endotoxin circulates at low concentrations in the blood of all healthy individuals, although elevated concentrations are associated with an increased risk of atherosclerosis. Objective: We sought to determine whether a high-fat meal or smoking increases plasma endotoxin concentrations and whether such concentrations are of physiologic relevance. Design: Plasma endotoxin and endotoxin neutralization capacity were measured for 4 h in 12 healthy men after no meal, 3 cigarettes, a high-fat meal, or a high-fat meal with 3 cigarettes by using the limulus assay. Results: Baseline endotoxin concentrations were 8.2 pg/mL (interquartile range: 3.4–13.5 pg/mL) but increased significantly (P < 0.05) by ≈50% after a high-fat meal or after a high-fat meal with cigarettes but not after no meal or cigarettes alone. These results were validated by the observations that a high-fat meal with or without cigarettes, but not no meal or smoking, also significantly (P < 0.05) reduced plasma endotoxin neutralization capacity, which is an indirect measure of endotoxin exposure. Human monocytes, but not aortic endothelial cells, were responsive to transient (30 s) or low-dose (10 pg/mL) exposure to endotoxin. However, plasma from whole blood treated with as little as 10 pg endotoxin/mL increased the endothelial cell expression of E-selectin, at least partly via tumor necrosis factor-α–induced cellular activation. Conclusions: Low-grade endotoxemia may contribute to the postprandial inflammatory state and could represent a novel potential contributor to endothelial activation and the development of atherosclerosis.
Resumo:
Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a ultra-high dose rate comparing them with standard dose rate. In this regard, a radioresistant SK-MEL-28 cell line were irradiated with x-ray in order to have a total dose of 2 and 4 Gy, at two different dose rate. The ultra-high dose rate is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles, in this case, we focused our study on the influence of X-rays. While a low dose rate is obtained with conventional X-ray tube. In this study it results that a ultra-high dose rate enhances radiosensitivity of melanoma cells while reducing the adhesion, proliferation and migration ability of cells.
Resumo:
X-ray computed tomography (CT) is a non-invasive medical imaging technique that generates cross-sectional images by acquiring attenuation-based projection measurements at multiple angles. Since its first introduction in the 1970s, substantial technical improvements have led to the expanding use of CT in clinical examinations. CT has become an indispensable imaging modality for the diagnosis of a wide array of diseases in both pediatric and adult populations [1, 2]. Currently, approximately 272 million CT examinations are performed annually worldwide, with nearly 85 million of these in the United States alone [3]. Although this trend has decelerated in recent years, CT usage is still expected to increase mainly due to advanced technologies such as multi-energy [4], photon counting [5], and cone-beam CT [6].
Despite the significant clinical benefits, concerns have been raised regarding the population-based radiation dose associated with CT examinations [7]. From 1980 to 2006, the effective dose from medical diagnostic procedures rose six-fold, with CT contributing to almost half of the total dose from medical exposure [8]. For each patient, the risk associated with a single CT examination is likely to be minimal. However, the relatively large population-based radiation level has led to enormous efforts among the community to manage and optimize the CT dose.
As promoted by the international campaigns Image Gently and Image Wisely, exposure to CT radiation should be appropriate and safe [9, 10]. It is thus a responsibility to optimize the amount of radiation dose for CT examinations. The key for dose optimization is to determine the minimum amount of radiation dose that achieves the targeted image quality [11]. Based on such principle, dose optimization would significantly benefit from effective metrics to characterize radiation dose and image quality for a CT exam. Moreover, if accurate predictions of the radiation dose and image quality were possible before the initiation of the exam, it would be feasible to personalize it by adjusting the scanning parameters to achieve a desired level of image quality. The purpose of this thesis is to design and validate models to quantify patient-specific radiation dose prospectively and task-based image quality. The dual aim of the study is to implement the theoretical models into clinical practice by developing an organ-based dose monitoring system and an image-based noise addition software for protocol optimization.
More specifically, Chapter 3 aims to develop an organ dose-prediction method for CT examinations of the body under constant tube current condition. The study effectively modeled the anatomical diversity and complexity using a large number of patient models with representative age, size, and gender distribution. The dependence of organ dose coefficients on patient size and scanner models was further evaluated. Distinct from prior work, these studies use the largest number of patient models to date with representative age, weight percentile, and body mass index (BMI) range.
With effective quantification of organ dose under constant tube current condition, Chapter 4 aims to extend the organ dose prediction system to tube current modulated (TCM) CT examinations. The prediction, applied to chest and abdominopelvic exams, was achieved by combining a convolution-based estimation technique that quantifies the radiation field, a TCM scheme that emulates modulation profiles from major CT vendors, and a library of computational phantoms with representative sizes, ages, and genders. The prospective quantification model is validated by comparing the predicted organ dose with the dose estimated based on Monte Carlo simulations with TCM function explicitly modeled.
Chapter 5 aims to implement the organ dose-estimation framework in clinical practice to develop an organ dose-monitoring program based on a commercial software (Dose Watch, GE Healthcare, Waukesha, WI). In the first phase of the study we focused on body CT examinations, and so the patient’s major body landmark information was extracted from the patient scout image in order to match clinical patients against a computational phantom in the library. The organ dose coefficients were estimated based on CT protocol and patient size as reported in Chapter 3. The exam CTDIvol, DLP, and TCM profiles were extracted and used to quantify the radiation field using the convolution technique proposed in Chapter 4.
With effective methods to predict and monitor organ dose, Chapters 6 aims to develop and validate improved measurement techniques for image quality assessment. Chapter 6 outlines the method that was developed to assess and predict quantum noise in clinical body CT images. Compared with previous phantom-based studies, this study accurately assessed the quantum noise in clinical images and further validated the correspondence between phantom-based measurements and the expected clinical image quality as a function of patient size and scanner attributes.
Chapter 7 aims to develop a practical strategy to generate hybrid CT images and assess the impact of dose reduction on diagnostic confidence for the diagnosis of acute pancreatitis. The general strategy is (1) to simulate synthetic CT images at multiple reduced-dose levels from clinical datasets using an image-based noise addition technique; (2) to develop quantitative and observer-based methods to validate the realism of simulated low-dose images; (3) to perform multi-reader observer studies on the low-dose image series to assess the impact of dose reduction on the diagnostic confidence for multiple diagnostic tasks; and (4) to determine the dose operating point for clinical CT examinations based on the minimum diagnostic performance to achieve protocol optimization.
Chapter 8 concludes the thesis with a summary of accomplished work and a discussion about future research.
Resumo:
Dans la pratique actuelle de la curiethérapie à bas débit, l'évaluation de la dose dans la prostate est régie par le protocole défini dans le groupe de travail 43 (TG-43) de l'American Association of Physicists in Medicine. Ce groupe de travail suppose un patient homogène à base d'eau de même densité et néglige les changements dans l'atténuation des photons par les sources de curiethérapie. En considérant ces simplifications, les calculs de dose se font facilement à l'aide d'une équation, indiquée dans le protocole. Bien que ce groupe de travail ait contribué à l'uniformisation des traitements en curiethérapie entre les hôpitaux, il ne décrit pas adéquatement la distribution réelle de la dose dans le patient. La publication actuelle du TG-186 donne des recommandations pour étudier des distributions de dose plus réalistes. Le but de ce mémoire est d'appliquer ces recommandations à partir du TG-186 pour obtenir une description plus réaliste de la dose dans la prostate. Pour ce faire, deux ensembles d'images du patient sont acquis simultanément avec un tomodensitomètre à double énergie (DECT). Les artéfacts métalliques présents dans ces images, causés par les sources d’iode, sont corrigés à l'aide d’un algorithme de réduction d'artefacts métalliques pour DECT qui a été développé dans ce travail. Ensuite, une étude Monte Carlo peut être effectuée correctement lorsque l'image est segmentée selon les différents tissus humains. Cette segmentation est effectuée en évaluant le numéro atomique effectif et la densité électronique de chaque voxel, par étalonnage stoechiométrique propre au DECT, et en y associant le tissu ayant des paramètres physiques similaires. Les résultats montrent des différences dans la distribution de la dose lorsqu'on compare la dose du protocole TG-43 avec celle retrouvée avec les recommandations du TG-186.