961 resultados para liver cancer
Resumo:
Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.
Resumo:
Background - Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods - In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500 ppm/24 h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35 mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500 ppm 1 h/day; n = 6 in each group). Results - Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p < 0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30–50%, p < 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p < 0.01), and doubled the survival rates (p < 0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p = 0.006). Conclusion - These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer.
Resumo:
Background: Carbon monoxide, the gaseous product of heme oxygenase, is a signalling molecule with a broad spectrum of biological activities. The aim of this study was to investigate the effects of carbon monoxide on proliferation of human pancreatic cancer. Methods: In vitro studies were performed on human pancreatic cancer cells (CAPAN-2, BxPc3, and PaTu-8902) treated with a carbon monoxide-releasing molecule or its inactive counterpart, or exposed to carbon monoxide gas (500. ppm/24. h). For in vivo studies, pancreatic cancer cells (CAPAN-2/PaTu-8902) were xenotransplanted subcutaneously into athymic mice, subsequently treated with carbon monoxide-releasing molecule (35. mg/kg b.w. i.p./day), or exposed to safe doses of carbon monoxide (500. ppm 1. h/day; n=. 6 in each group). Results: Both carbon monoxide-releasing molecule and carbon monoxide exposure significantly inhibited proliferation of human pancreatic cancer cells (p<0.05). A substantial decrease in Akt phosphorylation was observed in carbon monoxide-releasing molecule compared with inactive carbon monoxide-releasing molecule treated cancer cells (by 30-50%, p<. 0.05). Simultaneously, carbon monoxide-releasing molecule and carbon monoxide exposure inhibited tumour proliferation and microvascular density of xenotransplanted tumours (p<0.01), and doubled the survival rates (p<0.005). Exposure of mice to carbon monoxide led to an almost 3-fold increase in carbon monoxide content in tumour tissues (p=0.006). Conclusion: These data suggest a new biological function for carbon monoxide in carcinogenesis, and point to the potential chemotherapeutic/chemoadjuvant use of carbon monoxide in pancreatic cancer. © 2013 Editrice Gastroenterologica Italiana S.r.l.
Resumo:
Breast cancer is a disease associated with excess exposures to estrogens. While the mode of cancer causation is unknown, others have shown that oxidative stress induced by prolonged exposure to estrogens mediates renal, liver, endometrial and mammary tumorigenesis though the mechanism(s) underling this process is unknown. In this study, we show that 4-hydroxyl 17β-estradiol (4-OHE2), a catechol metabolite of estrogen, induces mammary tumorigenesis in a redox dependent manner. We found that the mechanism of tumorigenesis involves redox activations of nuclear respiratory factor-1 (NRF1); a transcriptions factor associated with regulation of mitochondria biogenesis and oxidative phosphorylation (OXPHOS), as well as mediation of cell survival and growth of cells during periods of oxidative stress. Key findings from our study are as follows: (i) Prolonged treatments of normal mammary epithelial cells with 4-OHE2, increased the formation of intracellular reactive oxygen species (ROS). (ii) Estrogen-induced ROS activates redox sensitive transcription factors NRF1. (iii) 4-OHE2 through activation of serine-threonine kinase and histone acetyl transferase, phosphorylates and acetylate NRF1 respectively. (iv) Redox mediated epigenetic modifications of NRF1 facilitates mammary tumorigenesis and invasive phenotypes of breast cancer cells via modulations of genes involved in proliferation, growth and metastasis of exposed cells. (v) Animal engraftment of transformed clones formed invasive tumors. (vi) Treatment of cells or tumors with biological or chemical antioxidants, as well as silencing of NRF1 expressions, prevented 4-OHE2 induced mammary tumorigenesis and invasive phenotypes of MCF-10A cells. Based on these observations, we hypothesize that 4-OHE2 induced ROS epigenetically activate NRF1 through its phosphorylation and acylation. This, in turn, through NRF1-mediated transcriptional activation of the cell cycle genes, controls 4-OHE2 induced cell transformation and tumorigenesis.^
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Hepatocellular carcinoma (HCC) is an increasingly common form of cancer. Although its spontaneous rupture is rare in Western countries, it constitutes a surgical emergency and is associated with high mortality. There is a lack of consensus as to the best approach and what parameters to use in choosing it. The three main approaches are conservative, endovascular and resection - the treatment of choice for acute abdominal bleeding. We report a case of hemoperitoneum following the spontaneous rupture of an unrecognized HCV-related HCC in a patient with no history of liver disease. The patient was successfully treated by emergency surgery, with resection of two segments of the left liver.
Resumo:
International audience
Resumo:
International audience
Resumo:
Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.