948 resultados para liquid-solid extraction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purification of collagenase produced by Penicillium aurantiogriseum URM4622 was carried using a PEG/phosphate aqueous two-phase system (ATPS). A 2(3)-full experimental design was used to investigate the influence of PEG molar mass, PEG concentration and phosphate concentration on the selected responses, namely partition coefficient, activity yield and purification factor. The ATPS was composed of PEG (molar mass of 550, 1500 and 4000 g/mol) at concentrations of 15.0, 17.5 and 20.0% (w/w) and phosphate at concentrations of 12.5, 15.0 and 17.5% (w/w). The best results of one-step extraction of collagenase from the fermentation broth (partition coefficient of 1.01, activity yield of 242% and purification factor of 23.5) were obtained at pH 6.0 using 20.0% (w/w) PEG 550 and 17.5% (w/w) phosphate. The results of this preliminary study demonstrate that the selected ATPS is satisfactorily selective for the extraction of such a collagenase. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work describes for the first time the use of SPME coupled to LC-MS/MS employing the polar organic mode in a stereoselective fungal biotransformation study to investigate the fungi ability to biotransform the drug risperidone into its chiral and active metabolite 9-hydroxyrisperidone (9-RispOH). The chromatographic separation was performed on a Chiralcel OJ-H column using methanol:ethanol (50:50, v/v) plus 0.2% triethylamine as the mobile phase at a flow rate of 0.8 mL min(-1). The SPME process was performed using a C18 fiber, 30 min of extraction time and 5 min of desorption time in the mobile phase. The method was completely validated and all parameters were in agreement with the literature recommendations. The Cunninghamella echinulata fungus was able to biotransform risperidone into the active metabolite, (+)-9-RispOH, resulting in 100% of enantiomeric excess. The Cunninghamella elegans fungus was also able to stereoselectively biotransform risperidone into (+)- and (-)-9-RispOH enantiomers at different rates. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Determination of organic acids in intracellular extracts and in the cultivation media of marine microalgae aid investigations about metabolic routes related to assimilation of atmospheric carbon by these organisms, which are known by their role in the carbon dioxide sink. The separation of these acids was investigated by hydrophilic interaction liquid chromatography (HILIC) using isocratic elution with a mobile phase composed of 70: 30 v/v acetonitrile/20 mmol/L ammonium acetate buffer (pH 6.8) and detection at 220 nm. HILIC allowed the determinations of glycolic acid, the most important metabolite for the evaluation of the photorespiration process in algae, to be made with better selectivity than that achieved by reversed phase liquid chromatography, but with less detectability. The concentration of glycolic acid was determined in the cultivation media and in intracellular extracts of the algae Tetraselmis gracilis and Phaeodactylum tricornutum submitted to different conditions of aeration: (i) without forced aeration, (ii) aeration with atmospheric air, and (iii) bubbling with N(2). The concentration of glycolic acid had a higher increase as the cultures were aerated with nitrogen, showing higher photorespiratory flux than that occurring in the cultures aerated with atmospheric air.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple and sensitive method using solid phase microextraction (SPME) and liquid chromatography (LC) with heated online desorption (SPME-LC) was developed and validated to analyze anticonvulsants (AEDs) in human plasma samples. A heated lab-made interface chamber was used in the desorption procedure, which allowed the transference of the whole extracted sample. The SPME conditions were optimized by applying an experimental design. Important factors are discussed such as fiber coating types, pH, extraction time and desorption conditions. The drugs were analyzed by LC, using a C18 column (150 mm x 4.6 mm x 5 mm); and 50 mmol L-1, pH 5.50 ammonium acetate buffer : acetonitrile : methanol (55 : 22 : 23 v/v) as the mobile phase with a flow rate of 0.8 mL min(-1). The suggested method presented precision (intra-assay and inter-assay), linearity and limit of quantification (LOQ) all adequate for the therapeutic drug monitoring (TDM) of AEDs in plasma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CONTEXT: Esophageal dysphagia is the sensation that the ingested material has a slow transit or blockage in its normal passage to the stomach. It is not always associated with motility or transit alterations. OBJECTIVES: To evaluate in normal volunteers the possibility of perception of bolus transit through the esophagus after swallows of liquid and solid boluses, the differences in esophageal contraction and transit with these boluses, and the association of transit perception with alteration of esophageal contraction and/or transit. METHODS: The investigation included 11 asymptomatic volunteers, 4 men and 7 women aged 19-58 years. The subjects were evaluated in the sitting position. They performed swallows of the same volume of liquid (isotonic drink) and solid (macaroni) boluses in a random order and in duplicate. After each swallow they were asked about the sensation of bolus passage through the esophagus. Contractions and transit were evaluated simultaneously by solid state manometry and impedance. RESULTS: Perception of bolus transit occurred only with the solid bolus. The amplitude and area under the curve of contractions were higher with swallows of the solid bolus than with swallows of the liquid bolus. The difference was more evident in swallows with no perception of transit (n = 12) than in swallows with perception (n = 10). The total bolus transit time was longer for the solid bolus than for the liquid bolus only with swallows followed by no perception of transit. CONCLUSION: The results suggest that the perception of esophageal transit may be the consequence of inadequate adaptation of esophageal transit and contraction to the characteristics of the swallowed bolus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN]Until recently, sample preparation was carried out using traditional techniques, such as liquid–liquid extraction (LLE), that use large volumes of organic solvents. Solid-phase extraction (SPE) uses much less solvent than LLE, although the volume can still be significant. These preparation methods are expensive, time-consuming and environmentally unfriendly. Recently, a great effort has been made to develop new analytical methodologies able to perform direct analyses using miniaturised equipment, thereby achieving high enrichment factors, minimising solvent consumption and reducing waste. These microextraction techniques improve the performance during sample preparation, particularly in complex water environmental samples, such as wastewaters, surface and ground waters, tap waters, sea and river waters. Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) and time-of-flight mass spectrometric (TOF/MS) techniques can be used when analysing a broad range of organic micropollutants. Before separating and detecting these compounds in environmental samples, the target analytes must be extracted and pre-concentrated to make them detectable. In this work, we review the most recent applications of microextraction preparation techniques in different water environmental matrices to determine organic micropollutants: solid-phase microextraction SPME, in-tube solid-phase microextraction (IT-SPME), stir bar sorptive extraction (SBSE) and liquid-phase microextraction (LPME). Several groups of compounds are considered organic micropollutants because these are being released continuously into the environment. Many of these compounds are considered emerging contaminants. These analytes are generally compounds that are not covered by the existing regulations and are now detected more frequently in different environmental compartments. Pharmaceuticals, surfactants, personal care products and other chemicals are considered micropollutants. These compounds must be monitored because, although they are detected in low concentrations, they might be harmful toward ecosystems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A universal and robust analytical method for the determination of Δ9-tetrahydrocannabinol (THC) and two of its metabolites Δ9-(11-OH)-tetrahydrocannabinol (11-OH-THC) and 11-nor-Δ9-carboxy-tetrahydrocannabinol (THC-COOH) in human whole blood was developed and validated for use in forensic toxicology. Protein precipitation, integrated solid phase extraction and on-line enrichment followed by high-performance liquid chromatography separation and detection with a triple quadrupole mass spectrometer were combined. The linear ranges used for the three cannabinoids were from 0.5 to 20 ng/mL for THC and 11-OH-THC and from 2.5 to 100 ng/mL for THC-COOH, therefore covering the requirements for forensic use. Correlation coefficients of 0.9980 or better were achieved for all three analytes. No relevant hydrolysis was observed for THC-COOH glucuronide with this procedure--in contrast to our previous GC-MS procedure, which obviously lead to an artificial increase of the THC-COOH concentration due to the hydrolysis of the glucuronide-conjugate occurring at high pH during the phase-transfer catalyzed methylation step.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liquid-liquid extraction (LLE) is a method used to separate compounds based on their relative activity in two immiscible phases. By significantly reducing the scale of liquid-liquid extraction to the micro- and milli-fluidic levels, this separation process can bemade suitable for low volume, high value materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conventional liquid liquid extraction (LLE) methods require large volumes of fluids to achieve the desired mass transfer of a solute, which is unsuitable for systems dealing with a low volume or high value product. An alternative to these methods is to scale down the process. Millifluidic devices share many of the benefits of microfluidic systems, including low fluid volumes, increased interfacial area-to-volume ratio, and predictability. A robust millifluidic device was created from acrylic, glass, and aluminum. The channel is lined with a hydrogel cured in the bottom half of the device channel. This hydrogel stabilizes co-current laminar flow of immiscible organic and aqueous phases. Mass transfer of the solute occurs across the interface of these contacting phases. Using a y-junction, an aqueous emulsion is created in an organic phase. The emulsion travels through a length of tubing and then enters the co-current laminar flow device, where the emulsion is broken and each phase can be collected separately. The inclusion of this emulsion formation and separation increases the contact area between the organic and aqueous phases, therefore increasing the area over which mass transfer can occur. Using this design, 95% extraction efficiency was obtained, where 100% is represented by equilibrium. By continuing to explore this LLE process, the process can be optimized and with better understanding may be more accurately modeled. This system has the potential to scale up to the industrial level and provide the efficient extraction required with low fluid volumes and a well-behaved system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study describes the development and validation of a gas chromatography-mass spectrometry (GC-MS) method to identify and quantitate phenytoin in brain microdialysate, saliva and blood from human samples. A solid-phase extraction (SPE) was performed with a nonpolar C8-SCX column. The eluate was evaporated with nitrogen (50°C) and derivatized with trimethylsulfonium hydroxide before GC-MS analysis. As the internal standard, 5-(p-methylphenyl)-5-phenylhydantoin was used. The MS was run in scan mode and the identification was made with three ion fragment masses. All peaks were identified with MassLib. Spiked phenytoin samples showed recovery after SPE of ≥94%. The calibration curve (phenytoin 50 to 1,200 ng/mL, n = 6, at six concentration levels) showed good linearity and correlation (r² > 0.998). The limit of detection was 15 ng/mL; the limit of quantification was 50 ng/mL. Dried extracted samples were stable within a 15% deviation range for ≥4 weeks at room temperature. The method met International Organization for Standardization standards and was able to detect and quantify phenytoin in different biological matrices and patient samples. The GC-MS method with SPE is specific, sensitive, robust and well reproducible, and is therefore an appropriate candidate for the pharmacokinetic assessment of phenytoin concentrations in different human biological samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.