958 resultados para linear energy transfer
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
There are several competing methods commonly used to solve energy grained master equations describing gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem, there is little guidance in the literature. In this paper we directly compare several variants of spectral and numerical integration methods from the point of view of computer time required to calculate the solution and the range of temperature and pressure conditions under which the methods are successful. The test case used in the comparison is an important reaction in combustion chemistry and incorporates reversible and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species. While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall, it is the fastest method applicable to all conditions.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, 2016.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures that can be used as optical transducers for fluorescent proteins detection using the Fluorescence Resonance Energy Transfer approach. Double structures composed by pin based aSiC:H cells are analyzed. The color discrimination is achieved by ac photocurrent measurement under different externally applied bias. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. An electrical model, supported by a numerical simulation gives insight into the device operation. Results show that the optimized a-SiC:H heterostructures act as voltage controlled optical filters in the visible spectrum. When the applied voltages are chosen appropriately those optical transducers can detect not only the selective excitation of specimen fluorophores, but also the subsequent weak acceptor fluorescent channel emission.
Resumo:
Optical colour sensors based on multilayered a-SiC:H heterostructures can act as voltage controlled optical filters in the visible range. In this article we investigate the application of these structures for Fluorescence Resonance Energy Transfer (FRET) detection, The characteristics of a-SiC:H multilayered structure are studied both theoretically and experimentally in several wavelengths corresponding to different fluorophores. The tunable optical p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures were produced by PECVD and tested for a proper fine tuning in the violet, cyan and yellow wavelengths. The devices were characterized through transmittance and spectral response measurements, under different electrical bias and frequencies. Violet, cyan and yellow signals were applied in simultaneous and results have shown that they can be recovered under suitable applied bias. A theoretical analysis supported by numerical simulation is presented.
Resumo:
The characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.
Resumo:
The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.
Resumo:
Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ,24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.
Resumo:
In this paper, we present a multilayer device based on a-Si:H/a-SiC:H that operates as photodetector and optical filter. The use of such device in protein detection applications is relevant in Fluorescence Resonance Energy Transfer (FRET) measurements. This method demands the detection of fluorescent signals located at specific wavelengths bands in the visible part of the electromagnetic spectrum. The device operates in the visible range with a selective sensitivity dependent on electrical and optical bias. Several nanosensors were tested with a commercial spectrophotometer to assess the performance of FRET signals using glucose solutions of different concentrations. The proposed device was used to demonstrate the possibility of FRET signals detection, using visible signals of similar wavelength and intensity. The device sensitivity was tuned to enhance the wavelength band of interest using steady state optical bias at 400 nm. Results show the ability of the device to detect signals in this range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
RESUMO:As terapias biológicas revolucionaram o tratamento das doenças autoimunes nos últimos anos. Tipicamente têm como alvos mediadores importantes no mecanismo das doenças. Os antagonistas do fator de necrose tumoral-α (TNF-α) são um grupo de agentes biológicos muito prescrito, pois estão indicados no tratamento de doenças imuno-mediadas comuns, tais como artrite reumatoide, artrite idiopática juvenil, artrite psoriática, espondilite anquilosante, doença de Crohn e colite ulcerosa. Com o uso frequente de inibidores do TNF-α, tem-se tornado evidente que estes agentes têm um potencial imunogénico importante, que pode comprometer o prognóstico a longo prazo dos doentes cronicamente tratados. A produção de anticorpos anti-fármaco parece causar falência terapêutica secundária em muitos doentes. Um dos efeitos dos anticorpos anti-fármaco é o aumento da eliminação do fármaco. A eliminação do fármaco, por sua vez, varia entre indivíduos, refletindo diferentes perfis farmacocinéticos. A determinação dos níveis séricos mínimos do agente anti-TNF-α é assim muito informativa e pode auxiliar nas decisões terapêuticas. Contudo, os testes imunológicos para determinar as concentrações séricas do fármaco não estão facilmente disponíveis na prática clínica. De forma a investigar uma nova técnica potencialmente fidedigna e prática para a deteção e quantificação dos agentes biológicos anti-TNF-α, foi testada a técnica por HTRF (homogeneous time-resolved fluorescence resonance energy transfer) para a determinação de concentrações séricas de infliximab. Apesar de apresentar algumas limitações relacionadas com as condições de leitura da fluorescência, esta técnica provou obter resultados próximos das concentrações obtidas por ELISA (enzyme-linked immunosorbent assay) bridging. Adicionalmente, tem a vantagem de ser de execução muito mais fácil e rápida. Deste modo, a técnica por HTRF poderá ser otimizada e tornar-se uma valiosa ferramenta laboratorial para orientar as decisões terapêuticas em doentes autoimunes com falência da terapêutica anti-TNF-α.--------- ABSTRACT: Biologic therapies revolutionized the treatment of autoimmune diseases in the last years. Typically, they target important disease mediators. Tumor necrosis factor-alpha (TNF-α) antagonists constitute a very prescribed group of biologic agents as they are indicated for the treatment of common immune-mediated diseases, such as rheumatoid arthritis, juvenile idiopathic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn’s disease and ulcerative colitis. With the increasing use of TNF-α inhibitors it has been noticed that they have an important immunogenic potential that can compromise long-term outcomes in chronically treated patients. The production of anti-drug antibodies seems to cause secondary therapeutic failure in many patients. One of the effects of anti-drug antibodies is the enhancement of drug clearance. Drug clearance, in turn, varies among individuals, reflecting different pharmacokinetic profiles. Determination of serum anti-TNF-α drug trough levels is though very informative and could support treatment decisions. However, immunologic assays to determine drug serum concentrations are not readily available in clinical practice. In order to investigate a potentially reliable and practical new technique for detection and quantification of anti-TNF-α biologic agents, homogeneous time-resolved fluorescence resonance energy transfer (HTRF) technique was tested for determination of serum infliximab concentrations. Although presenting some limitations related with fluorescence reading conditions, this technique proved to give results close to the concentrations obtained by the widely used bridging enzyme-linked immunosorbent assay (ELISA). In addition, it has the advantage of being much easier and faster to perform. Thus, HTRF technique can be optimized and become a valuable laboratorial tool to guide treatment decisions in autoimmune patients with anti-TNF-α therapy failure.