829 resultados para light weight design
Resumo:
The great male Aussie cossie is growing spots. The ‘dick’ tog, as it is colloquially referred to, is linked to Australia’s national identify with overtly masculine bronzed Aussie bodies clothed in this iconic apparel. Yet the reality is our hunger for worshiping the sun and the addiction to a beach lifestyle is tempered by the pragmatic need for neck-to-knee, or more apt head-to-toe, swimwear. Spotty Dick is an irreverent play on male swimwear – it experiments with alternate modes to sheath the body with Lyrca in order to protect it from searing UV’s and at the same time light-heartedly fools around with texture and pattern; to be specific, black Scharovsky crystals, jewelled in spot patterns - jewelled clothing is not characteristically aligned to menswear and even less so to the great Aussie cossie. The crystals form a matrix of spots that attempt to provoke a sense of mischievousness aligned to the Aussie beach larrikin. Ironically, spot patterns are in itself a form of a parody, as prolonged sun exposure ages the skin and sun spots can occur if appropriate sun protection is not used. ‘Spotty Dick’ – a research experiment to test design suitability for the use of jewelled spot matrix patterns for UV aware men’s swimwear. The creative work was paraded at 56 shows, over a 2 week period, and an estimated 50,000 people viewed the work.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Spatially offset Raman spectroscopy (SORS) is demonstrated for the non-contact detection of energetic materials concealed within non-transparent, diffusely scattering containers. A modified design of an inverse SORS probe has been developed and tested. The SORS probe has been successfully used for the detection of various energetic substances inside different types of plastic containers. The tests have been successfully conducted under incandescent and fluorescent background lights as well as under daylight conditions, using a non-contact working distance of 6 cm. The interrogation times for the detection of the substances were less than 1 minute in each case, highlighting the suitability of the device for near real-time detection of concealed hazards in the field. The device has potential applications in forensic analysis and homeland security investigations.
Resumo:
Australian law teachers are increasingly recognising that psychological distress is an issue for our students. This article describes how the Queensland University of Technology Law School is reforming its curriculum to promote student psychological well-being. Part I of the article examines the literature on law student psychological distress in Australia. It is suggested that cross-sectional and longitudinal studies undertaken in Australia provide us with different, but equally important, information with respect to law student psychological well-being. Part II describes a subject in the QUT Law School - Lawyering and Dispute Resolution – which has been specifically designed as one response to declines in law student psychological well-being. Part III then considers two key elements of the design of the subject: introducing students to the idea of a positive professional identity, and introducing students to non-adversarial lawyering and the positive role of lawyers in society as dispute resolvers. These two areas of focus specifically promote law student psychological well-being by encouraging students to engage with elements of positive psychology – in particular, hope and optimism.
Resumo:
Photocatalytic water splitting is a process which could potentially lead to commercially viable solar hydrogen production. This thesis uses an engineering perspective to investigate the technology. The effect of light intensity and temperature on photocatalytic water splitting was examined to evaluate the prospect of using solar concentration to increase the feasibility of the process. P25 TiO2 films deposited on conducting glass were used as photocatalyst electrodes and coupled with platinum electrodes which were also deposited on conducting glass. These films were used to form a photocatalysis cell and illuminated with a Xenon arc lamp to simulate solar light at intensities up to 50 suns. They were also tested at temperatures between 20°C and 100°C. The reaction demonstrated a sub-linear relationship with intensity. Photocurrent was proportional to intensity with an exponential value of 0.627. Increasing temperature resulted in an exponential relationship. This proved to follow an Arrhenius relationship with an activation energy of 10.3 kJ mol-1 and a pre-exponential factor of approximately 8.7×103. These results then formed the basis of a mathematical model which extrapolated beyond the range of the experimental tests. This model shows that the loss of efficiency from performing the reaction under high light intensity is offset by the increased reaction rate and efficiency from the associated temperature increase. This is an important finding for photocatalytic water splitting. It will direct future research in system design and materials research and may provide an avenue for the commercialisation of this technology.
Resumo:
Objective: We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention. Design: 16 obese men and women (41 ± 9 years; BMI 39 ± 6 kg/m2) were investigated in energy balance before, after and twice during a 12-week VLED (565–650 kcal/day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74-87%). Body composition was measured by deuterium dilution and DXA and resting metabolic rate (RMR) by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants: 9.45 kcal/gFM and 1.13 kcal/gFFM. Predicted weight loss was calculated from the energy deficit using the '7700 kcal/kg rule'. Results: Changes in weight (-18.6 ± 5.0 kg), FM (-15.5 ± 4.3 kg), and FFM (-3.1 ± 1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39 to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01) and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of predicted values. Conclusion: Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. While lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic down-regulation should not be discounted.
Resumo:
The use of material artefacts within the design process is a long-standing and continuing characteristic of interaction design. Established methods, such as prototyping, which have been widely adopted by educators and practitioners, are seeing renewed research interest and being reconsidered in light of the evolving needs of the field. Alongside this, the past decade has seen the introduction and adoption of a diverse range of novel design methods into interaction design, such as cultural probes, technology probes, context mapping, and provotypes.
Resumo:
Gesture interfaces are an attractive avenue for human-computer interaction, given the range of expression that people are able to engage when gesturing. Consequently, there is a long running stream of research into gesture as a means of interaction in the field of human-computer interaction. However, most of this research has focussed on the technical challenges of detecting and responding to people’s movements, or on exploring the interaction possibilities opened up by technical developments. There has been relatively little research on how to actually design gesture interfaces, or on the kinds of understandings of gesture that might be most useful to gesture interface designers. Running parallel to research in gesture interfaces, there is a body of research into human gesture, which would seem a useful source to draw knowledge that could inform gesture interface design. However, there is a gap between the ways that ‘gesture’ is conceived of in gesture interface research compared to gesture research. In this dissertation, I explore this gap and reflect on the appropriateness of existing research into human gesturing for the needs of gesture interface design. Through a participatory design process, I designed, prototyped and evaluated a gesture interface for the work of the dental examination. Against this grounding experience, I undertook an analysis of the work of the dental examination with particular focus on the roles that gestures play in the work to compare and discuss existing gesture research. I take the work of the gesture researcher McNeill as a point of focus, because he is widely cited within gesture interface research literature. I show that although McNeill’s research into human gesture can be applied to some important aspects of the gestures of dentistry, there remain range of gestures that McNeill’s work does not deal with directly, yet which play an important role in the work and could usefully be responded to with gesture interface technologies. I discuss some other strands of gesture research, which are less widely cited within gesture interface research, but offer a broader conception of gesture that would be useful for gesture interface design. Ultimately, I argue that the gap in conceptions of gesture between gesture interface research and gesture research is an outcome of the different interests that each community brings to bear on the research. What gesture interface research requires is attention to the problems of designing gesture interfaces for authentic context of use and assessment of existing theory in light of this.
Resumo:
My quantitative study asks how Chinese Australians’ “Chineseness” and their various resources influence their Chinese language proficiency, using online survey and snowball sampling. ‘Operationalization’ is a challenging process which ensures that the survey design talks back to the informing theory and forwards to the analysis model. It requires the attention to two core methodological concerns, namely ‘validity’ and ‘reliability’. Construction of a high-quality questionnaire is critical to the achievement of valid and reliable operationalization. A series of strategies were chosen to ensure the quality of the questions, and thus the eventual data. These strategies enable the use of structural equation modelling to examine how well the data fits the theoretical framework, which was constructed in light of Bourdieu’s theory of habitus, capital and field.
Resumo:
The world of disability is often neglected or taken for granted in able-bodied society. Apart from the challenge that disability is a social construct (Linton, 1998, 2006; Longmore, 2003; Thompson, 1997) there is an impact on the people with disability that they either feel left out or they don’t belong in the larger community. The able-bodied community is also left with very little knowledge or no sensitivity towards people with disability. These internal whirlpools do not contribute to any community only to create larger gaps and higher differences between the groups of people. Peace (2010) claims that disability is something imposed on to a person on top of a physical impairment. Nord (2008) advocates that while environmental barriers and social attitudes are crucial aspects of a person’s experience, they can indeed disable a person. The study reported high-lights what is home for people with disability and their family members. The way the person with disability and family members without disability share the same home and nurture personal relationships with each other demands greater attention. This research sheds light on the intricate relationships that exists between the family members including person with disability and their built environment. These existential connections provide a holistic viewpoint and the glimpse into the lived experiences of homes for people with disability and their care-givers. Concepts of universal design or barrier free design have not been successful (Connell and Sanford, 1999) in revealing in-depth the nature of place-making for people with disability and their care-givers. Such studies fail to incorporate the holistic needs of individuals with disability and their family members in terms of their bodily, visceral, emotional, social, psycho-social, intuitive, spiritual and temporal needs, to name a few (Franz, Bitner, 2010). This paper reports on some preliminary findings on phenomena of dwelling for people with different kinds of disability and their care-givers sharing the same home from an interior design perspective.
Resumo:
Purpose – The purpose of this paper is to provide a new type of entry mode decision-making model for construction enterprises involved in international business. Design/methodology/approach – A hybrid method combining analytic hierarchy process (AHP) with preference ranking organization method for enrichment evaluations (PROMETHEE) is used to aid entry mode decisions. The AHP is used to decompose the entry mode problem into several dimensions and determine the weight of each criterion. In addition, PROMETHEE method is used to rank candidate entry modes and carry out sensitivity analyses. Findings – The proposed decision-making method is demonstrated to be a suitable approach to resolve the entry mode selection decision problem. Practical implications – The research provides practitioners with a more systematic decision framework and a more precise decision method. Originality/value – The paper sheds light on the further development of entry strategies for international construction markets. It not only introduces a new decision-making model for entry mode decision making, but also provides a conceptual framework with five determinants for a construction company entry mode selection based on the unique properties of the construction industry.
Resumo:
Fire safety of light gauge steel frame (LSF) stud walls is important in the design of buildings. Currently LSF walls are increasingly used in the building industry, and are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. Many experimental and numerical studies have been undertaken to investigate the fire performance of load bearing LSF walls under standard fire conditions. However, the standard time-temperature curve does not represent the fire load present in typical residential and commercial buildings that include considerable amount of thermoplastic materials. Real building fires are unlikely to follow a standard time-temperature curve. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under realistic design fire conditions. Therefore in this research, finite element thermal models of the traditional LSF wall panels without cavity insulation and the new LSF composite wall panels were developed to simulate their fire performance under recently developed realistic design fire curves. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their thermal performance results with available results from realistic design fire tests, and were later used in parametric studies. This paper presents the details of the developed finite element thermal models of load bearing LSF wall panels under realistic design fire time-temperature curves and the re-sults. It shows that finite element thermal models can be used to predict the fire performance of load bearing LSF walls with varying configurations of insulations and plasterboards under realistic design fires. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.
Resumo:
This paper presents the direct strength method (DSM) equations for cold-formed steel beams subject to shear. Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and hollow flange beams (HFB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements and ignore the post-buckling strength. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LSBs, LCBs and HFBs. New direct strength method (DSM) based design equations were proposed to determine the ultimate shear capacities of cold-formed steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the DSM design equations. A new post-buckling coefficient was also introduced in the DSM equation to include the available post-buckling strength of cold-formed steel beams.
Resumo:
Resilient Maroochydore 2029 This exhibition showcases the work of 4th year undergraduate Landscape Architecture students in response to issues of sustainability in Maroochydore on the Queensland Sunshine coast. The projects comprising this exhibition all investigate possible design futures for the Maroochydore Centre, in the light of a series of new disturbance scenarios. Specific disturbances upon the landscape have been imagined, and design resolutions developed based on resilience to these disturbances. The proposals investigate how the Maroochydore Centre might respond to these scenarios, and how future components of the Centre might be designed for greater ‘resilience’. The Exhibition Five groups of students (32 in total) produced five strategic planning and design options toward this future: Team Transect: “What happens to a region following a sustained period of economic prosperity, with affordable property and negligible unemployment? This proposal investigates the effects on a community of massive population explosion, land shortages and inadequate planning regulations following an extended boom period.” The Foodfighters: “This proposal considers the scenario of massive food shortages and of escalating prices, and the possibility of government intervention to stabilise food supply. Strategies based upon simplified, collaborative approaches to food production are investigated.” The TTMKG: “This proposal explores the scenario of Peak Oil and the subsequent effects on society of homelessness, large scale unemployment, food shortages and global financial and political instability. Individual opportunities are restricted by the limitations of bicycle transportation.” Team Peak: “Peak Oil has restricted private vehicle transport to only the most wealthy, while public transport systems are under immense pressure. Rising unemployment drives localised trade initiatives, and the global import/export market has collapsed. This proposal considers the transition of a community from its position in a global economy to that of a relocalised economy, where basic needs are secured as close to home as possible.” After the City: “A rapid population decline as a result of the region’s failing economy has resulted in a fragmented urban fabric. This proposal investigates the possibility of new suburbanisation, reinterpretation and reinvention of space through phased processes.”
Resumo:
Organisations are engaging in e-learning as a mechanism for delivering flexible learning to meet the needs of individuals and organisations. In light of the increasing use and organisational investment in e-learning, the need for methods to evaluate the success of its design and implementation seems more important than ever. To date, developing a standard for the evaluation of e-learning appears to have eluded both academics and practitioners. The currently accepted evaluation methods for e-learning are traditional learning and development models, such as Kirkpatrick’s model (1976). Due to the technical nature of e-learning it is important to broaden the scope and consider other evaluation models or techniques, such as the DeLone and McLean Information Success Model, that may be applicable to the e-learning domain. Research into the use of e-learning courses has largely avoided considering the applicability of information systems research. Given this observation, it is reasonable to conclude that e-learning implementation decisions and practice could be overlooking useful or additional viewpoints. This research investigated how existing evaluation models apply in the context of organisational e-learning, and resulted in an Organisational E-learning success Framework, which identifies the critical elements for success in an e-learning environment. In particular this thesis highlights the critical importance of three e-learning system creation elements; system quality, information quality, and support quality. These elements were explored in depth and the nature of each element is described in detail. In addition, two further elements were identified as factors integral to the success of an e-learning system; learner preferences and change management. Overall, this research has demonstrated the need for a holistic approach to e-learning evaluation. Furthermore, it has shown that the application of both traditional training evaluation approaches and the D&M IS Success Model are appropriate to the organisational e-learning context, and when combined can provide this holistic approach. Practically, this thesis has reported the need for organisations to consider evaluation at all stages of e-learning from design through to implementation.