916 resultados para learning tasks
Resumo:
The objective of the thesis was to study the possible linguistic differences of English of Finnish mainstream students and Finnish students following content and language integrated learning (CLIL), in terms of the given language test. The difference of test results between the test groups was further analyzed in more detail. The research was carried out by comparing the 9th grade students of the Finnish comprehensive school (the mainstream group) and CLIL students of the 9th grade of the Finnish comprehensive school (the CLIL group). The comparison was based on the national language test for the 9th grade students of the Finnish comprehensive school 2006 (A-English), produced by Sukol-Palvelu, owned by the Federation of Foreign Language Teachers in Finland SUKOL. The mainstream group of the present study consisted of 30 students, whereas the CLIL group included 27 students. Testing was carried out in spring 2007. The test results of the mainstream group (average of 64.1% out of the maximum score) were consistent with the results of the national average (63.9%). The average score of the CLIL students for the present study was 83.3% out of the maximum score. The results of the two groups in question were rather similar in the tasks measuring the skill of listening comprehension, in addition to one of the reading comprehension tasks. Moreover, a particular task with requirements of cultural and reactional skills produced results rather similar between the test groups. The differences between the results of the mainstream group and the CLIL group were most evident in three particular tasks. In general, the CLIL group performed clearly better than the mainstream group in the task measuring the knowledge of the polite conversational manners of the English-speaking world and in the tasks with requirements of lexical and structural knowledge of English. However, the writing task resulted in the most evident difference of results between the groups. In other words, the CLIL students of the present study were clearly more capable of producing English language with more varied vocabulary and more complex structures than the mainstream students. Thus, it might be argued whether the CLIL programme is to enhance the students´ performance in the productive skill of writing in particular. As a result, it might be useful to consider the possibilities of the CLIL programme in developing certain linguistic skills of the mainstream students of English as well.
Resumo:
This qualitative case study explored three teacher candidates’ learning and enactment of discourse-focused mathematics teaching practices. Using audio and video recordings of their teaching practice this study aimed to identify the shifts in the way in which the teacher candidates enacted the following discourse practices: elicited and used evidence of student thinking, posed purposeful questions, and facilitated meaningful mathematical discourse. The teacher candidates’ written reflections from their practice-based coursework as well as interviews were examined to see how two mathematics methods courses influenced their learning and enactment of the three discourse focused mathematics teaching practices. These data sources were also used to identify tensions the teacher candidates encountered. All three candidates in the study were able to successfully enact and reflect on these discourse-focused mathematics teaching practices at various time points in their preparation programs. Consistency of use and areas of improvement differed, however, depending on various tensions experienced by each candidate. Access to quality curriculum materials as well as time to formulate and enact thoughtful lesson plans that supported classroom discourse were tensions for these teacher candidates. This study shows that teacher candidates are capable of enacting discourse-focused teaching practices early in their field placements and with the support of practice-based coursework they can analyze and reflect on their practice for improvement. This study also reveals the importance of assisting teacher candidates in accessing rich mathematical tasks and collaborating during lesson planning. More research needs to be explored to identify how specific aspects of the learning cycle impact individual teachers and how this can be used to improve practice-based teacher education courses.
Resumo:
Trabalho apresentado em PAEE/ALE’2016, 8th International Symposium on Project Approaches in Engineering Education (PAEE) and 14th Active Learning in Engineering Education Workshop (ALE)
Resumo:
In this thesis we aimed to explore the potential of gamification - defined as “the use of game elements in non-game contexts” [30] - in increasing children's (aged 5 to 6) engagement with the task. This is mainly due to the fact that our world is living a technological era, and videogames are an example of this engagement by being able to maintain children’s (and adults) engagement for hours straight. For the purpose of limiting complexity, we only addressed the feedback element by introducing it with an anthropomorphic virtual agent (human-like aspect), because research shows that virtual agents (VA’s) can influence behavioural change [17], or even induce emotions on humans both through the use of feedback provided and their facial expressions, which can interpreted in the same way as of humans’ [2]. By pairing the VA with the gamification concept, we wanted to 1) create a VA that is likely to be well-received by children (appearance and behaviour), and 2) have the immediate feedback that games have, so we can give children an assessment of their actions in real-time, as opposed to waiting for feedback from someone (traditional teaching), and with this give students more chances to succeed [32, 43]. Our final system consisted on a virtual environment, where children formed words that corresponded to a given image. In order to measure the impact that the VA had on engagement, the system was developed in two versions: one version of the system was limited to provide a simple feedback environment, where the VA provided feedback, by responding with simple phrases (i.e. “correct” or “incorrect”); for the second version, the VA had a more complex approach where it tried to encourage children to complete the word – a motivational feedback - even when they weren’t succeeding. Lastly we conducted a field study with two groups of children, where one group tested the version with the simple feedback, and the other group tested the ‘motivational’ version of the system. We used a quantitative approach to analyze the collected data that measured the engagement, based on the number of tasks (words) completed and time spent with system. The results of the evaluation showed that the use of motivational feedback may carry a positive effect on engaging children.
Resumo:
This paper investigates how textbook design may influence students’ visual attention to graphics, photos and text in current geography textbooks. Eye tracking, a visual method of data collection and analysis, was utilised to precisely monitor students’ eye movements while observing geography textbook spreads. In an exploratory study utilising random sampling, the eye movements of 20 students (secondary school students 15–17 years of age and university students 20–24 years of age) were recorded. The research entities were double-page spreads of current German geography textbooks covering an identical topic, taken from five separate textbooks. A two-stage test was developed. Each participant was given the task of first looking at the entire textbook spread to determine what was being explained on the pages. In the second stage, participants solved one of the tasks from the exercise section. Overall, each participant studied five different textbook spreads and completed five set tasks. After the eye tracking study, each participant completed a questionnaire. The results may verify textbook design as one crucial factor for successful knowledge acquisition from textbooks. Based on the eye tracking documentation, learning-related challenges posed by images and complex image-text structures in textbooks are elucidated and related to educational psychology insights and findings from visual communication and textbook analysis.
Resumo:
In this thesis we aimed to explore the potential of gamification - defined as “the use of game elements in non-game contexts” [30] - in increasing children's (aged 5 to 6) engagement with the task. This is mainly due to the fact that our world is living a technological era, and videogames are an example of this engagement by being able to maintain children’s (and adults) engagement for hours straight. For the purpose of limiting complexity, we only addressed the feedback element by introducing it with an anthropomorphic virtual agent (human-like aspect), because research shows that virtual agents (VA’s) can influence behavioural change [17], or even induce emotions on humans both through the use of feedback provided and their facial expressions, which can interpreted in the same way as of humans’ [2]. By pairing the VA with the gamification concept, we wanted to 1) create a VA that is likely to be well-received by children (appearance and behaviour), and 2) have the immediate feedback that games have, so we can give children an assessment of their actions in real-time, as opposed to waiting for feedback from someone (traditional teaching), and with this give students more chances to succeed [32, 43]. Our final system consisted on a virtual environment, where children formed words that corresponded to a given image. In order to measure the impact that the VA had on engagement, the system was developed in two versions: one version of the system was limited to provide a simple feedback environment, where the VA provided feedback, by responding with simple phrases (i.e. “correct” or “incorrect”); for the second version, the VA had a more complex approach where it tried to encourage children to complete the word – a motivational feedback - even when they weren’t succeeding. Lastly we conducted a field study with two groups of children, where one group tested the version with the simple feedback, and the other group tested the ‘motivational’ version of the system. We used a quantitative approach to analyze the collected data that measured the engagement, based on the number of tasks (words) completed and time spent with system. The results of the evaluation showed that the use of motivational feedback may carry a positive effect on engaging children.
Resumo:
Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.
Resumo:
Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.
Resumo:
Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.
Resumo:
This study reports on an international project in which students taking the course Contemporary Issues in Turkish Politics in spring 2011 and fall 2011 at two institutions of higher education, ‘Gettysburg College’ in the United States and ‘Izmir University of Economics’ in Turkey, worked together in virtual learning environments to complete various tasks as part of their course work. The project employed a blend of traditional and technology-based teaching methods in order to introduce a technology like Skype in a bi-national learning environment in Turkey. Students collaborated and interacted with their international counterparts in two different virtual contexts. First, classrooms in the two countries were merged via Skype three times to conduct classroom-to-classroom discussion sessions on Turkish politics. Second, students were paired across locations to work on several assignments. In this paper, our goal is to present how Skype is used in a bi-national context as a blended teaching tool in an upper-level college course for instructors pursuing a similar exercise. In addition to outlining the process with a focus on Skype discussions and one-on-one student projects, we provide actual assignments and discussion questions. Students’ views elicited through surveys administered throughout the semester are presented alongside anecdotal evidence to reflect how the project was received.
Resumo:
Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.
Resumo:
Creativity seems mysterious; when we experience a creative spark, it is difficult to explain how we got that idea, and we often recall notions like ``inspiration" and ``intuition" when we try to explain the phenomenon. The fact that we are clueless about how a creative idea manifests itself does not necessarily imply that a scientific explanation cannot exist. We are unaware of how we perform certain tasks, such as biking or language understanding, but we have more and more computational techniques that can replicate and hopefully explain such activities. We should understand that every creative act is a fruit of experience, society, and culture. Nothing comes from nothing. Novel ideas are never utterly new; they stem from representations that are already in mind. Creativity involves establishing new relations between pieces of information we had already: then, the greater the knowledge, the greater the possibility of finding uncommon connections, and the more the potential to be creative. In this vein, a beneficial approach to a better understanding of creativity must include computational or mechanistic accounts of such inner procedures and the formation of the knowledge that enables such connections. That is the aim of Computational Creativity: to develop computational systems for emulating and studying creativity. Hence, this dissertation focuses on these two related research areas: discussing computational mechanisms to generate creative artifacts and describing some implicit cognitive processes that can form the basis for creative thoughts.