270 resultados para lEDs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este trabajo es un estudio profundo del crecimiento selectivo de nanoestructuras de InGaN por epitaxia de haces moleculares asistido por plasma, concentrandose en el potencial de estas estructuras como bloques constituyentes en LEDs de nueva generación. Varias aproximaciones al problema son discutidas; desde estructuras axiales InGaN/GaN, a estructuras core-shell, o nanoestructuras crecidas en sustratos con orientaciones menos convencionales (semi polar y no polar). La primera sección revisa los aspectos básicos del crecimiento auto-ensamblado de nanocolumnas de GaN en sustratos de Si(111). Su morfología y propiedades ópticas son comparadas con las de capas compactas de GaN sobre Si(111). En el caso de las columnas auto-ensambladas de InGaN sobre Si(111), se presentan resultados sobre el efecto de la temperatura de crecimiento en la incorporación de In. Por último, se discute la inclusión de nanodiscos de InGaN en las nanocolumnas de GaN. La segunda sección revisa los mecanismos básicos del crecimiento ordenado de nanoestructuras basadas en GaN, sobre templates de GaN/zafiro. Aumentando la relación III/V localmente, se observan cambios morfológicos; desde islas piramidales, a nanocolumnas de GaN terminadas en planos semipolares, y finalmente, a nanocolumnas finalizadas en planos c polares. Al crecer nanodiscos de InGaN insertados en las nanocolumnas de GaN, las diferentes morfologias mencionadas dan lugar a diferentes propiedades ópticas de los nanodiscos, debido al diferente carácter (semi polar o polar) de los planos cristalinos involucrados. La tercera sección recoge experimentos acerca de los efectos que la temperatura de crecimiento y la razón In/Ga tienen en la morfología y emisión de nanocolumnas ordenadas de InGaN crecidas sobre templates GaN/zafiro. En el rango de temperaturas entre 650 y 750 C, la incorporacion de In puede modificarse bien por la temperatura de crecimiento, o por la razón In/Ga. Controlar estos factores permite la optimización de la longitud de onda de emisión de las nanocolumnas de InGaN. En el caso particular de la generación de luz blanca, se han seguidos dos aproximaciones. En la primera, se obtiene emisión amarilla-blanca a temperatura ambiente de nanoestructuras donde la región de InGaN consiste en un gradiente de composiciones de In, que se ha obtenido a partir de un gradiente de temperatura durante el crecimiento. En la segunda, el apilamiento de segmentos emitiendo en azul, verde y rojo, consiguiendo la integración monolítica de estas estructuras en cada una de las nanocolumnas individuales, da lugar a emisores ordenados con un amplio espectro de emisión. En esta última aproximación, la forma espectral puede controlarse con la longitud (duración del crecimiento) de cada uno de los segmentos de InGaN. Más adelante, se presenta el crecimiento ordenado, por epitaxia de haces moleculares, de arrays de nanocolumnas que son diodos InGaN/GaN cada una de ellas, emitiendo en azul (441 nm), verde (502 nm) y amarillo (568 nm). La zona activa del dispositivo consiste en una sección de InGaN, de composición constante nominalmente y longitud entre 250 y 500 nm, y libre de defectos extendidos en contraste con capas compactas de InGaN de similares composiciones y espesores. Los espectros de electroluminiscencia muestran un muy pequeño desplazamiento al azul al aumentar la corriente inyectada (desplazamiento casi inexistente en el caso del dispositivo amarillo), y emisiones ligeramente más anchas que en el caso del estado del arte en pozos cuánticos de InGaN. A continuación, se presenta y discute el crecimiento ordenado de nanocolumnas de In(Ga)N/GaN en sustratos de Si(111). Nanocolumnas ordenadas emitiendo desde el ultravioleta (3.2 eV) al infrarrojo (0.78 eV) se crecieron sobre sustratos de Si(111) utilizando una capa compacta (“buffer”) de GaN. La morfología y eficiencia de emisión de las nanocolumnas emitiendo en el rango espectral verde pueden ser mejoradas ajustando las relaciones In/Ga y III/N, y una eficiencia cuántica interna del 30% se deriva de las medidas de fotoluminiscencia en nanocolumnas optimizadas. En la siguiente sección de este trabajo se presenta en detalle el mecanismo tras el crecimiento ordenado de nanocolumnas de InGaN/GaN emitiendo en el verde, y sus propiedades ópticas. Nanocolumnas de InGaN/GaN con secciones largas de InGaN (330-830 nm) se crecieron tanto en sustratos GaN/zafiro como GaN/Si(111). Se encuentra que la morfología y la distribución espacial del In dentro de las nanocolumnas dependen de las relaciones III/N e In/Ga locales en el frente de crecimiento de las nanocolumnas. La dispersión en el contenido de In entre diferentes nanocolumnas dentro de la misma muestra es despreciable, como indica las casi identicas formas espectrales de la catodoluminiscencia de una sola nanocolumna y del conjunto de ellas. Para las nanocolumnas de InGaN/GaN crecidas sobre GaN/Si(111) y emitiendo en el rango espectral verde, la eficiencia cuántica interna aumenta hasta el 30% al disminuir la temperatura de crecimiento y aumentar el nitrógeno activo. Este comportamiento se debe probablemente a la formación de estados altamente localizados, como indica la particular evolución de la energía de fotoluminiscencia con la temperatura (ausencia de “s-shape”) en muestras con una alta eficiencia cuántica interna. Por otro lado, no se ha encontrado la misma dependencia entre condiciones de crecimiento y efiencia cuántica interna en las nanoestructuras InGaN/GaN crecidas en GaN/zafiro, donde la máxima eficiencia encontrada ha sido de 3.7%. Como alternativa a las nanoestructuras axiales de InGaN/GaN, la sección 4 presenta resultados sobre el crecimiento y caracterización de estructuras core-shell de InGaN/GaN, re-crecidas sobre arrays de micropilares de GaN fabricados por ataque de un template GaN/zafiro (aproximación top-down). El crecimiento de InGaN/GaN es conformal, con componentes axiales y radiales en el crecimiento, que dan lugar a la estructuras core-shell con claras facetas hexagonales. El crecimiento radial (shell) se ve confirmado por medidas de catodoluminiscencia con resolución espacial efectuadas en un microscopio electrónico de barrido, asi como por medidas de microscopía de transmisión de electrones. Más adelante, el crecimiento de micro-pilares core-shell de InGaN se realizó en pilares GaN (cores) crecidos selectivamente por epitaxia de metal-orgánicos en fase vapor. Con el crecimiento de InGaN se forman estructuras core-shell con emisión alrededor de 3 eV. Medidas de catodoluminiscencia resuelta espacialmente indican un aumento en el contenido de indio del shell en dirección a la parte superior del pilar, que se manifiesta en un desplazamiento de la emisión de 3.2 eV en la parte inferior, a 3.0 eV en la parte superior del shell. Este desplazamiento está relacionado con variaciones locales de la razón III/V en las facetas laterales. Finalmente, se demuestra la fabricación de una estructura pin basada en estos pilares core-shell. Medidas de electroluminiscencia resuelta espacialmente, realizadas en pilares individuales, confirman que la electroluminiscencia proveniente del shell de InGaN (diodo lateral) está alrededor de 3.0 eV, mientras que la emisión desde la parte superior del pilar (diodo axial) está alrededor de 2.3 eV. Para finalizar, se presentan resultados sobre el crecimiento ordenado de GaN, con y sin inserciones de InGaN, en templates semi polares (GaN(11-22)/zafiro) y no polares (GaN(11-20)/zafiro). Tras el crecimiento ordenado, gran parte de los defectos presentes en los templates originales se ven reducidos, manifestándose en una gran mejora de las propiedades ópticas. En el caso de crecimiento selectivo sobre templates con orientación GaN(11-22), no polar, la formación de nanoestructuras con una particular morfología (baja relación entre crecimiento perpedicular frente a paralelo al plano) permite, a partir de la coalescencia de estas nanoestructuras, la fabricación de pseudo-templates no polares de GaN de alta calidad. ABSTRACT The aim of this work is to gain insight into the selective area growth of InGaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. Several nanocolumn-based approaches such as standard axial InGaN/GaN structures, InGaN/GaN core-shell structures, or InGaN/GaN nanostructures grown on semi- and non-polar substrates are discussed. The first section reviews the basics of the self-assembled growth of GaN nanocolumns on Si(111). Morphology differences and optical properties are compared to those of GaN layer grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanocolumns grown on Si(111) is described. The second section reviews the basic growth mechanisms of selectively grown GaNbased nanostructures on c-plane GaN/sapphire templates. By increasing the local III/V ratio morphological changes from pyramidal islands, to GaN nanocolumns with top semi-polar planes, and further to GaN nanocolumns with top polar c-planes are observed. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semipolar and polar nature of the crystal planes involved. The third section reports on the effect of the growth temperature and In/Ga ratio on the morphology and light emission characteristics of ordered InGaN nanocolumns grown on c-plane GaN/sapphire templates. Within the growth temperature range of 650 to 750oC the In incorporation can be modified either by the growth temperature, or the In/Ga ratio. Control of these factors allows the optimization of the InGaN nanocolumns light emission wavelength. In order to achieve white light emission two approaches are used. First yellow-white light emission can be obtained at room temperature from nanostructures where the InGaN region is composition-graded by using temperature gradients during growth. In a second approach the stacking of red, green and blue emitting segments was used to achieve the monolithic integration of these structures in one single InGaN nanocolumn leading to ordered broad spectrum emitters. With this approach, the spectral shape can be controlled by changing the thickness of the respective InGaN segments. Furthermore the growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells. Next the selective area growth of In(Ga)N/GaN nanocolumns on Si(111) substrates is discussed. Ordered In(Ga)N/GaN nanocolumns emitting from ultraviolet (3.2 eV) to infrared (0.78 eV) were then grown on top of GaN-buffered Si substrates. The morphology and the emission efficiency of the In(Ga)N/GaN nanocolumns emitting in the green could be substantially improved by tuning the In/Ga and total III/N ratios, where an estimated internal quantum efficiency of 30 % was derived from photoluminescence data. In the next section, this work presents a study on the selective area growth mechanisms of green-emitting InGaN/GaN nanocolumns and their optical properties. InGaN/GaN nanocolumns with long InGaN sections (330-830nm) were grown on GaN/sapphire and GaN-buffered Si(111). The nanocolumn’s morphology and spatial indium distribution is found to depend on the local group (III)/N and In/Ga ratios at the nanocolumn’s top. A negligible spread of the average indium incorporation among different nanostructures is found as indicated by similar shapes of the cathodoluminescence spectra taken from single nanocolumns and ensembles of nanocolumns. For InGaN/GaN nanocolumns grown on GaN-buffered Si(111), all emitting in the green spectral range, the internal quantum efficiency increases up to 30% when decreasing growth temperature and increasing active nitrogen. This behavior is likely due to the formation of highly localized states, as indicated by the absence of a complete s-shape behavior of the PL peak position with temperature (up to room temperature) in samples with high internal quantum efficiency. On the other hand, no dependence of the internal quantum efficiency on the growth conditions is found for InGaN/GaN nanostructures grown on GaN/sapphire, where the maximum achieved efficiency is 3.7%. As alternative to axial InGaN/GaN nanostructures, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods etched from a GaN/sapphire template. Growth of InGaN/GaN is conformal, with axial and radial growth components leading to core-shell structures with clear hexagonal facets. The radial InGaN growth (shell) is confirmed by spatially resolved cathodoluminescence performed in a scanning electron microscopy as well as in scanning transmission electron microscopy. Furthermore the growth of InGaN core-shell micro pillars using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template is demonstrated. Upon InGaN overgrowth core-shell structures with emission at around 3.0 eV are formed. With spatially resolved cathodoluminescence, an increasing In content towards the pillar top is found to be present in the InGaN shell, as indicated by a shift of CL peak position from 3.2 eV at the shell bottom to 3.0 eV at the shell top. This shift is related to variations of the local III/V ratio at the side facets. Further, the successful fabrication of a core-shell pin diode structure is demonstrated. Spatially resolved electroluminescence measurements performed on individual micro LEDs, confirm emission from the InGaN shell (lateral diode) at around 3.0 eV, as well as from the pillar top facet (axial diode) at around 2.3 eV. Finally, this work reports on the selective area growth of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the GaN templates is strongly reduced as indicated by TEM and a dramatic improvement of the optical properties. In case of SAG on non-polar (11-22) templates the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of the nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo trata sobre la implementación de un prototipo de pulsioxímetro, es decir, un dispositivo capaz de medir la saturación de oxígeno en sangre y el ritmo cardiaco. Aprovechando una serie de propiedades ópticas se aplicará una técnica no invasiva basada en la absorción diferencial de la luz emitida por dos LEDs y, posteriormente, transmitida por los componentes del tejido humano. La caracterización de las constantes vitales del paciente será posible gracias a la comparación de las respuestas correspondientes a las dos longitudes de onda empleadas realizada por un fotodetector. Además de estos elementos, el sistema estará formado por un circuito analógico de acondicionamiento de la señal, un microcontrolador Arduino y un módulo de visualización LCD. El documento presentará la motivación que ha impulsado la elaboración de este proyecto, así como los conceptos fisiológicos y técnicos sobre los que se asienta el sistema y las fases de desarrollo que ha conllevado su implementación en un modelo real. Asimismo, se mencionarán las limitaciones del pulsioxímetro, los resultados de las mediciones experimentales y las posibles mejoras que podrían realizarse orientadas a la continuidad del diseño. El aliciente principal del proyecto está relacionado con su coste de fabricación. El objetivo es diseñar un dispositivo asequible que garantice una precisión de cálculo similar al de otros sistemas presentes en el mercado actual. Por ello, se realizará una comparativa sobre la fiabilidad de las lecturas del dispositivo frente a las especificaciones de dichos productos, con precios más elevados y por tanto menos accesibles para los países en vías de desarrollo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En éste trabajo se ofrece la realización de una célula elemental programable ópticamente, capaz de realizar hasta siete operaciones lógicas, constituyendo catorce pares de salida. El principio innovador de la célula, es el uso de fibras ópticas multimodo, enlazadas mediante acopladores convencionales de COs, a 1,3 fim. Como fuentes de radiación óptica se han empleado LEDs de bajo costo, constituyendo esto una nueva ventaja sobre otras células presentadas en la literatura del tema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La preservación del medio ambiente, el avance en las técnicas para que el impacto de la actividad humana sobre la fauna y flora sea lo menor posible, hacen que se deban monitorizar los diversos indicadores de calidad. El presente estudio viene motivado debido a que actualmente existen sistemas de medida y control en continuo de la calidad de las aguas, al margen de los estudios de laboratorio por toma de muestras, a través de los cuales se obtienen indicadores de calidad. El desarrollo tecnológico en analizadores en continuo para la medida de fósforo, amonio, DBO y otros, hacen que cada vez se consiga un control más exhaustivo de la calidad en tiempo real. Sin embargo, la detección temprana de contaminantes que no deben encontrarse presentes en el agua, hacen que el desarrollo de sensores de detección de estos contaminantes sea de gran utilidad. A este respecto, las técnicas mediante fluorescencia presentan enormes ventajas, ya que no existe contacto directo con la muestra, reduciéndose el desgaste y alargando el tiempo entre mantenimientos, como se ha comprobado en numerosos desarrollos con tecnología láser. Para la producir fluorescencia, tradicionalmente se vienen utilizando en el laboratorio principalmente lámparas de gas y monocromadores. Los nuevos LED de alta potencia en el espectro ultravioleta son una alternativa muy interesante que además puede ser aplicada en los mencionados sistemas de medición en continuo. En este trabajo se realiza un estudio de viabilidad de estos dispositivos como fuentes de excitación para la producción de fluorescencia tomando como contaminantes los hidrocarburos. El funcionamiento en estaciones en continuo hace que se tenga que realizar además ensayos de vida acelerados, así como estudios de modos de trabajo. Al respecto de la fluorescencia producida, se estudia la influencia de factores que pueden afectar a las medidas, tales como la temperatura. El estudio del espectro y su análisis para la identificación del contaminante es otro de los puntos desarrollados en este trabajo. Por último, y dado que la monitorización se realiza en modo continuo, es necesario un sistema de comunicaciones compacto y fiable: en este apartado se analizan los metamateriales como solución tecnológica, ya que se adapta perfectamente a la filosofía de estas estaciones de medición. ABSTRACT Currently the monitoring of quality indicators is a need to preserve the environment and minimize the impact of human activity on the fauna and flora. Currently there are measuring systems and continuous monitoring of water quality, regardless of sampling laboratory studies, through which quality indicators are obtained. Technological development in continuous analyzers for the measurement of phosphorus, ammonia, BOD and others increasingly make a more comprehensive real-time quality control is achieved. However, early detection of contaminants that should not be present in the water, make the development of sensors for detecting these contaminants is very useful. In this regard, fluorescence techniques have huge advantages, since there is no direct contact with the sample, reducing wear and extending the time between maintenance, as has been demonstrated in numerous developments in laser technology. To produce fluoresce, traditionally are being used mainly gas lamps and monochromators at the laboratory. The new high-power LEDs in the ultraviolet spectrum are a very interesting alternative that can also be applied in the above continuous measurement systems. In this paper a viability study of these devices as excitation sources to produce fluorescence using hydrocarbon as contaminants is performed. The stations in continuous operation makes it necessary to also perform accelerated life tests and studies operating modes. In regard to the fluorescence produced, the influence of factors that may affect the measurements, such as temperature is studied. The study of the spectrum and analysis to identify the contaminant is another of the points developed in this work. Finally, since the monitoring is carried out in continuous mode, a compact and reliable communication is necessary: in this section metamaterials as a technological solution is analyzed since it fits perfectly with the philosophy of these measuring stations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El proyecto trata del desarrollo de un software para realizar el control de la medida de la distribución de intensidad luminosa en luminarias LED. En el trascurso del proyecto se expondrán fundamentos teóricos sobre fotometría básica, de los cuales se extraen las condiciones básicas para realizar dicha medida. Además se realiza una breve descripción del hardware utilizado en el desarrollo de la máquina, el cual se basa en una placa de desarrollo Arduino Mega 2560, que, gracias al paquete de Labview “LIFA” (Labview Interface For Arduino”), será posible utilizarla como tarjeta de adquisición de datos mediante la cual poder manejar tanto sensores como actuadores, para las tareas de control. El instrumento de medida utilizado en este proyecto es el BTS256 de la casa GigaHerzt-Optik, del cual se dispone de un kit de desarrollo tanto en lenguaje C++ como en Labview, haciendo posible programar aplicaciones basadas en este software para realizar cualquier tipo de adaptación a las necesidades del proyecto. El software está desarrollado en la plataforma Labview 2013, esto es gracias a que se dispone del kit de desarrollo del instrumento de medida, y del paquete LIFA. El objetivo global del proyecto es realizar la caracterización de luminarias LED, de forma que se obtengan medidas suficientes de la distribución de intensidad luminosa. Los datos se recogerán en un archivo fotométrico específico, siguiendo la normativa IESNA 2002 sobre formato de archivos fotométricos, que posteriormente será utilizado en la simulación y estudio de instalaciones reales de la luminaria. El sistema propuesto en este proyecto, es un sistema basado en fotometría tipo B, utilizando coordenadas VH, desarrollando un algoritmo de medida que la luminaria describa un ángulo de 180º en ambos ejes, con una resolución de 5º para el eje Vertical y 22.5º para el eje Horizontal, almacenando los datos en un array que será escrito en el formato exigido por la normativa. Una vez obtenidos los datos con el instrumento desarrollado, el fichero generado por la medida, es simulado con el software DIALux, obteniendo unas medidas de iluminación en la simulación que serán comparadas con las medidas reales, intentando reproducir en la simulación las condiciones reales de medida. ABSTRACT. The project involves the development of software for controlling the measurement of light intensity distribution in LEDs. In the course of the project theoretical foundations on basic photometry, of which the basic conditions for such action are extracted will be presented. Besides a brief description of the hardware used in the development of the machine, which is based on a Mega Arduino plate 2560 is made, that through the package Labview "LIFA" (Interface For Arduino Labview "), it is possible to use as data acquisition card by which to handle both sensors and actuators for control tasks. The instrument used in this project is the BTS256 of GigaHerzt-Optik house, which is available a development kit in both C ++ language as LabView, making it possible to program based on this software applications for any kind of adaptation to project needs. The software is developed in Labview 2013 platform, this is thanks to the availability of the SDK of the measuring instrument and the LIFA package. The overall objective of the project is the characterization of LED lights, so that sufficient measures the light intensity distribution are obtained. Data will be collected on a specific photometric file, following the rules IESNA 2002 on photometric format files, which will then be used in the simulation and study of actual installations of the luminaire. The proposed in this project is a system based on photometry type B system using VH coordinates, developing an algorithm as the fixture describe an angle of 180 ° in both axes, with a resolution of 5 ° to the vertical axis and 22.5º for the Horizontal axis, storing data in an array to be written in the format required by the regulations. After obtaining the data with the instrument developed, the file generated by the measure, is simulated with DIALux software, obtaining measures of lighting in the simulation will be compared with the actual measurements, trying to play in the simulation the actual measurement conditions .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of transparent oxide semiconductors (TOS) from Earth-abundant materials is of great interest for cost-effective thin film device applications, such as solar cells, light emitting diodes (LEDs), touch-sensitive displays, electronic paper, and transparent thin film transistors. The need of inexpensive or high performance electrode might be even greater for organic photovoltaic (OPV), with the goal to harvest renewable energy with inexpensive, lightweight, and cost competitive materials. The natural abundance of zinc and the wide bandgap ($sim$3.3 eV) of its oxide make it an ideal candidate. In this dissertation, I have introduced various concepts on the modulations of various surface, interface and bulk opto-electronic properties of ZnO based semiconductor for charge transport, charge selectivity and optimal device performance. I have categorized transparent semiconductors into two sub groups depending upon their role in a device. Electrodes, usually 200 to 500 nm thick, optimized for good transparency and transporting the charges to the external circuit. Here, the electrical conductivity in parallel direction to thin film, i.e bulk conductivity is important. And contacts, usually 5 to 50 nm thick, are optimized in case of solar cells for providing charge selectivity and asymmetry to manipulate the built in field inside the device for charge separation and collection. Whereas in Organic LEDs (OLEDs), contacts provide optimum energy level alignment at organic oxide interface for improved charge injections. For an optimal solar cell performance, transparent electrodes are designed with maximum transparency in the region of interest to maximize the light to pass through to the absorber layer for photo-generation, plus they are designed for minimum sheet resistance for efficient charge collection and transport. As such there is need for material with high conductivity and transparency. Doping ZnO with some common elements such as B, Al, Ga, In, Ge, Si, and F result in n-type doping with increase in carriers resulting in high conductivity electrode, with better or comparable opto-electronic properties compared to current industry-standard indium tin oxide (ITO). Furthermore, improvement in mobility due to improvement on crystallographic structure also provide alternative path for high conductivity ZnO TCOs. Implementing these two aspects, various studies were done on gallium doped zinc oxide (GZO) transparent electrode, a very promising indium free electrode. The dynamics of the superimposed RF and DC power sputtering was utilized to improve the microstructure during the thin films growth, resulting in GZO electrode with conductivity greater than 4000 S/cm and transparency greater than 90 %. Similarly, various studies on research and development of Indium Zinc Tin Oxide and Indium Zinc Oxide thin films which can be applied to flexible substrates for next generation solar cells application is presented. In these new TCO systems, understanding the role of crystallographic structure ranging from poly-crystalline to amorphous phase and the influence on the charge transport and optical transparency as well as important surface passivation and surface charge transport properties. Implementation of these electrode based on ZnO on opto-electronics devices such as OLED and OPV is complicated due to chemical interaction over time with the organic layer or with ambient. The problem of inefficient charge collection/injection due to poor understanding of interface and/or bulk property of oxide electrode exists at several oxide-organic interfaces. The surface conductivity, the work function, the formation of dipoles and the band-bending at the interfacial sites can positively or negatively impact the device performance. Detailed characterization of the surface composition both before and after various chemicals treatment of various oxide electrode can therefore provide insight into optimization of device performance. Some of the work related to controlling the interfacial chemistry associated with charge transport of transparent electrodes are discussed. Thus, the role of various pre-treatment on poly-crystalline GZO electrode and amorphous indium zinc oxide (IZO) electrode is compared and contrasted. From the study, we have found that removal of defects and self passivating defects caused by accumulation of hydroxides in the surface of both poly-crystalline GZO and amorphous IZO, are critical for improving the surface conductivity and charge transport. Further insight on how these insulating and self-passivating defects cause charge accumulation and recombination in an device is discussed. With recent rapid development of bulk-heterojunction organic photovoltaics active materials, devices employing ZnO and ZnO based electrode provide air stable and cost-competitive alternatives to traditional inorganic photovoltaics. The organic light emitting diodes (OLEDs) have already been commercialized, thus to follow in the footsteps of this technology, OPV devices need further improvement in power conversion efficiency and stable materials resulting in long device lifetimes. Use of low work function metals such as Ca/Al in standard geometry do provide good electrode for electron collection, but serious problems using low work-function metal electrodes originates from the formation of non-conductive metal oxide due to oxidation resulting in rapid device failure. Hence, using low work-function, air stable, conductive metal oxides such as ZnO as electrons collecting electrode and high work-function, air stable metals such as silver for harvesting holes, has been on the rise. Devices with degenerately doped ZnO functioning as transparent conductive electrode, or as charge selective layer in a polymer/fullerene based heterojunction, present useful device structures for investigating the functional mechanisms within OPV devices and a possible pathway towards improved air-stable high efficiency devices. Furthermore, analysis of the physical properties of the ZnO layers with varying thickness, crystallographic structure, surface chemistry and grain size deposited via various techniques such as atomic layer deposition, sputtering and solution-processed ZnO with their respective OPV device performance is discussed. We find similarity and differences in electrode property for good charge injection in OLEDs and good charge collection in OPV devices very insightful in understanding physics behind device failures and successes. In general, self-passivating surface of amorphous TCOs IZO, ZTO and IZTO forms insulating layer that hinders the charge collection. Similarly, we find modulation of the carrier concentration and the mobility in electron transport layer, namely zinc oxide thin films, very important for optimizing device performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual acuity is limited by the size and density of the smallest retinal ganglion cells, which correspond to the midget ganglion cells in primate retina and the beta- ganglion cells in cat retina, both of which have concentric receptive fields that respond at either light- On or light- Off. In contrast, the smallest ganglion cells in the rabbit retina are the local edge detectors ( LEDs), which respond to spot illumination at both light- On and light- Off. However, the LEDs do not predominate in the rabbit retina and the question arises, what role do they play in fine spatial vision? We studied the morphology and physiology of LEDs in the isolated rabbit retina and examined how their response properties are shaped by the excitatory and inhibitory inputs. Although the LEDs comprise only similar to 15% of the ganglion cells, neighboring LEDs are separated by 30 - 40 mu m on the visual streak, which is sufficient to account for the grating acuity of the rabbit. The spatial and temporal receptive- field properties of LEDs are generated by distinct inhibitory mechanisms. The strong inhibitory surround acts presynaptically to suppress both the excitation and the inhibition elicited by center stimulation. The temporal properties, characterized by sluggish onset, sustained firing, and low bandwidth, are mediated by the temporal properties of the bipolar cells and by postsynaptic interactions between the excitatory and inhibitory inputs. We propose that the LEDs signal fine spatial detail during visual fixation, when high temporal frequencies are minimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internal quantum efficiency (IQE) of a blue high-brightness InGaN/GaN light-emitting diode (LED) was evaluated from the external quantum efficiency measured as a function of current at various temperatures ranged between 13 and 440 K. Processing the data with a novel evaluation procedure based on the ABC-model, we have determined the temperature-dependent IQE of the LED structure and light extraction efficiency of the LED chip. Separate evaluation of these parameters is helpful for further optimization of the heterostructure and chip designs. The data obtained enable making a guess on the temperature dependence of the radiative and Auger recombination coefficients, which may be important for identification of dominant mechanisms responsible for the efficiency droop in III-nitride LEDs. Thermal degradation of the LED performance in terms of the emission efficiency is also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visible light communications is a technology with enormous potential for a wide range of applications within next generation transmission and broadcasting technologies. VLC offers simultaneous illumination and data communications by intensity modulating the optical power emitted by LEDs operating in the visible range of the electromagnetic spectrum (~370-780 nm). The major challenge in VLC systems to date has been in improving transmission speeds, considering the low bandwidths available with commercial LED devices. Thus, to improve the spectral usage, the research community has increasingly turned to advanced modulation formats such as orthogonal frequency-division multiplexing. In this article we introduce a new modulation scheme into the VLC domain; multiband carrier-less amplitude and phase modulation (m-CAP) and describe in detail its performance within the context of bandlimited systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal analysis of electronic devices is one of the most important steps for designing of modern devices. Precise thermal analysis is essential for designing an effective thermal management system of modern electronic devices such as batteries, LEDs, microelectronics, ICs, circuit boards, semiconductors and heat spreaders. For having a precise thermal analysis, the temperature profile and thermal spreading resistance of the device should be calculated by considering the geometry, property and boundary conditions. Thermal spreading resistance occurs when heat enters through a portion of a surface and flows by conduction. It is the primary source of thermal resistance when heat flows from a tiny heat source to a thin and wide heat spreader. In this thesis, analytical models for modeling the temperature behavior and thermal resistance in some common geometries of microelectronic devices such as heat channels and heat tubes are investigated. Different boundary conditions for the system are considered. Along the source plane, a combination of discretely specified heat flux, specified temperatures and adiabatic condition are studied. Along the walls of the system, adiabatic or convective cooling boundary conditions are assumed. Along the sink plane, convective cooling with constant or variable heat transfer coefficient are considered. Also, the effect of orthotropic properties is discussed. This thesis contains nine chapters. Chapter one is the introduction and shows the concepts of thermal spreading resistance besides the originality and importance of the work. Chapter two reviews the literatures on the thermal spreading resistance in the past fifty years with a focus on the recent advances. In chapters three and four, thermal resistance of a twodimensional flux channel with non-uniform convection coefficient in the heat sink plane is studied. The non-uniform convection is modeled by using two functions than can simulate a wide variety of different heat sink configurations. In chapter five, a non-symmetrical flux channel with different heat transfer coefficient along the right and left edges and sink plane is analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues of the system are defined using the heat transfer coefficient on both edges and for satisfying the orthogonality condition, a normalized function is calculated. In chapter six, thermal behavior of two-dimensional rectangular flux channel with arbitrary boundary conditions on the source plane is presented. The boundary condition along the source plane can be a combination of the first kind boundary condition (Dirichlet or prescribed temperature) and the second kind boundary condition (Neumann or prescribed heat flux). The proposed solution can be used for modeling the flux channels with numerous different source plane boundary conditions without any limitations in the number and position of heat sources. In chapter seven, temperature profile of a circular flux tube with discretely specified boundary conditions along the source plane is presented. Also, the effect of orthotropic properties are discussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniform heat convection along the heat sink plane is analytically modeled. In chapter nine, a summary of the achievements is presented and some systems are proposed for the future studies. It is worth mentioning that all the models and case studies in the thesis are compared with the Finite Element Method (FEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on conical refraction (CR) experiments with low-coherent light sources such as light-emitting diodes (LEDs) that demonstrated different CR patterns. The change of a pinhole size from 25 to 100 μm reduced the spatial coherence of the LED radiation and resulted in the disappearance of the dark Poggendorf ring in the Lloyd's plane. This is attributed to the interference nature of the Lloyd's distribution and is found to be in excellent agreement with the paraxial dual-cone model of CR.