962 resultados para intradermal inoculation
Resumo:
M66 an X-ray induced mutant of winter wheat (Triticum aestivum) cv. Guardian exhibits broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. tritici), yellow rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici), along with partial resistance to stagnonospora nodorum blotch (caused by the necrotroph Stagonosporum nodorum) and septoria tritici blotch (caused by the hemibiotroph Mycosphaerella graminicola) compared to the parent plant ‘Guardian’. Analysis revealed that M66 exhibited no symptoms of infection following artificial inoculation with Bgt in the glasshouse after adult growth stage (GS 45). Resistance in M66 was associated with widespread leaf flecking which developed during tillering. Flecking also occurred in M66 leaves without Bgt challenge; as a result grain yields were reduced by approximately 17% compared to ‘Guardian’ in the absence of disease. At the seedling stage, M66 exhibited partial resistance. M66, along with Tht mutants (Tht 12, Tht13), also exhibit increased tolerance to environmental stresses (abiotic), such as drought and heat stress at seedling and adult growth stages, However, adult M66 exhibited increased susceptibility to the aphid Schizaphis graminum compared to ‘Guardian’. Resistance to Bgt in M66 was characterized with increased and earlier H2O2 accumulation at the site of infection which resulted in increased papilla formation in epidermal cells, compared to ‘Guardian’. Papilla formation was associated with reduced pathogen ingress and haustorium formation, indicating that the primary cause of resistance in M66 was prevention of pathogen penetration. Heat treatment at 46º C prior to challenge with Bgt also induced partial disease resistance to Blumeria graminis f. sp. tritici in ‘Guardian’ and M66 seedlings. This was characterized by a delay in primary infection, due to increased production of ROS species, such as hydrogen peroxide, ROS-scavenging enzymes and Hsp70, resulting in cross-linking of cell wall components prior to inoculation. This actively prevented the fungus from penetrating the epidermal cell wall. Proteomics analysis using 2-D gel electrophoresis identified primary and secondary disease resistance effects in M66 including detection of ROS scavenging enzymes (4, 24 hai), such as ascorbate peroxidase and a superoxidase dismutase isoform (CuZnSOD) in M66 which were absent from ‘Guardian’. Chitinase (PR protein) was also upregulated (24 hai) in M66 compared to ‘Guardian’.Monosomic and ditelosomic analysis of M66 revealed that the mutation in M66 is located on the long arm of chromosome 2B (2BL). Chromosome 2BL is known to have key genes involved in resistance to pathogens such as those causing stripe rust and powdery mildew. The TaMloB1 gene, an orthologue of the barley Mlo gene, is also located on chromosome 2BL. Sanger sequencing of part of the coding sequence revealed no deletions in the TaMloB1 gene between ‘Guardian’ and M66.
Resumo:
Despite a multitude of environmental stressors, the Varroa mite is still regarded as the greatest cause of honey bee mortality in its invaded range. Breeding honey bees that are resistant to the mite is an important area of research. This thesis aimed to gain a better understanding of the grooming and hygienic behaviours of Russian honey bees (RHB). The effect of a break in the synchrony of a mite’s life cycle on reproductive success was tested through brood inoculation experiments. Mites released by hygienic behaviour and forced to enter a new cell are less likely to lay male offspring. Through laboratory cage assays it was found that daughter mites are more susceptible to grooming behaviour. A new method of marking Varroa mites was developed which would enable a single cohort of mites to be followed after inoculation. A strong brood removal trait was noticed in RHB colonies, therefore they were tested for Varroa sensitive hygienic (VSH) behaviour. RHB demonstrated levels of VSH as high as the USDA line bred specifically for this behaviour. In addition the same QTL found to be responsible for the trait in VSH bees, was associated with VSH in RHB stock. Previous work showed that the ratio of older mites to total trapped mites (O/T) in the debris of honey bee colonies demonstrated the strongest association with colony infestation. This research showed that O/T is associated with VSH and brood removal behaviour. In addition, bees that displayed high levels of VSH in this study were also more likely to spend a longer amount of time grooming in laboratory assays. This indicates that both grooming and hygienic behaviours play important roles in the resistance of RHB stock. Their likelihood to be expressed by other stocks is discussed and recommendations for further research are provided.
Resumo:
Three bacterial isolates, SB13 (Acinetobacter sp.), SB14 (Arthrobacter sp.) and SB15 (Bacillus sp.), were previously isolated from the rhizosphere of sugar beet (Beta vulgaris ssp. vulgaris) plants and shown to increase hatch of potato cyst nematodes in vitro. In this study, the three isolates were assayed for rhizosphere competence. Each isolate was applied to seeds at each of four concentrations (105-108 CFU ml−1) and the inoculated seeds were planted in plastic microcosms containing coarse sand. All three isolates were shown to colonise the rhizosphere, although to differing degrees, with the higher inoculation densities providing significantly better colonisation. The isolates increased sugar beet root and shoot dry weight. Isolates SB14 and SB15 were analysed for their ability to induce in vivo hatch of Globodera pallida in non-sterile soil planted with sugar beet. After 4 and 6 weeks, both isolates had induced significantly greater percentage hatch compared to controls.
Resumo:
Field and laboratory studies were conducted from 1998 - 2005 to examine the relationship between nutritional status and mycobacteriosis in Chesapeake Bay striped bass (Morone saxatilis). A review of DNA from archived tissue blocks indicated that the disease has been present since at least 1984. Field surveys and feeding trials were conducted from 1998-1999 to determine the nutritional condition of striped bass and the association with disease state. Proximate composition revealed elevated moisture (~ 80%) and low storage lipids (< 0.5% ww), characteristic of a poorly nourished population. These findings were not consistent with data collected in 1990-1991, or with experimentally fed fish. Mycobacteriosis explained little of the variance in chemical composition (p > 0.2); however elevated moisture and low lipid concentration were associated with fish with ulcerative lesions (p < 0.05). This suggests that age 3 and 4 striped bass were in poor nutritional health in 1998-1999, which may be independent from the disease process. Challenge studies were performed to address the hypothesis that disease progression and severity may be altered by nutritional status of the host. Intraperitoneal inoculation of 104 CFU M. marinum resulted in high mortality, elevated bacterial density, and poor granuloma formation in low ration (0.15% bw/d) groups while adequately fed fish (1% bw/d) followed a normal course of granulomatous inflammation with low mortality to a steady, equilibrium state. Further, we demonstrated that an active inflammatory state could be reactivated in fish through reductions in total diet. The energetic demand of mycobacteriosis, was insignificant in comparison to sham inoculated controls in adequately fed fish (p > 0.05). Declines in total body energy were only apparent during active, inflammatory stages of disease. Overall, these findings suggest that: 1) mycobacteriosis is not a new disease of Chesapeake Bay striped bass, 2) the disease has little energetic demand in the normal, chronic progression, and 3) poor nutritional health can greatly enhance the progression and severity, and reactivation of disease. The implications of this research are that management strategies focused on enhancing the nutritional state of striped bass could potentially alter the disease dynamics in Chesapeake Bay.
Resumo:
African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90) to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.
Resumo:
Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen.
Resumo:
p.269-276
Resumo:
p.263-270
Resumo:
p.255-261
Resumo:
In recent years, increased focus has been placed on the role of intrauterine infection and inflammation in the pathogenesis of fetal brain injury leading to neurodevelopmental disorders such as cerebral palsy. At present, the mechanisms by which inflammatory processes during pregnancy cause this effect on the fetus are poorly understood. Our previous work has indicated an association between experimentally-induced intrauterine infection, increased proinflammatory cytokines, and increased white matter injury in the guinea pig fetus. In order to further elucidate the pathways by which inflammation in the maternal system or the fetal membranes leads to fetal impairment, a number of studies investigating aspects of the disease process have been performed. These studies represent a body of work encompassing novel research and results in a number of human and animal studies. Using a guinea pig model of inflammation, increased amniotic fluid proinflammatory cytokines and fetal brain injury were found after a maternal inflammatory response was initiated using endotoxin. In order to more closely monitor the fetal response to chorioamnionitis, a model using the chronically catheterized fetal ovine was carried out. This study demonstrated the adverse effects on fetal white matter after intrauterine exposure to bacterial inoculation, though the physiological parameters of the fetus were relatively stable throughout the experimental protocol, even when challenged with intermittent hypoxic episodes. The placenta is an important mediator between mother and fetus during gestation, though its role in the inflammatory process is largely undefined. Studies on the placental role in the inflammatory process were undertaken, and the limited ability of proinflammatory cytokines and endotoxin to cross the placenta are detailed herein. Neurodevelopmental disorders can be monitored in animal models in order to determine effective disease models for characterization of injury and use in therapeutic strategies. Our characterizations of postnatal behaviour in the guinea pig model using motility monitoring and spatial memory testing have shown small but significant differences in pups exposed to inflammatory processes in utero. The data presented herein contributes a breadth of knowledge to the ongoing elucidation of the pathways by which fetal brain injury occurs. Determining the pathway of damage will lead to discovery of diagnostic criteria, while determining the vulnerabilities of the developing fetus is essential in formulating therapeutic options.
Resumo:
Members of the morbillivirus genus, canine distemper (CDV), phocine distemper virus (PDV), and the cetacean viruses of dolphins and porpoises exhibit high levels of CNS infection in their natural hosts. CNS complications are rare for measles virus (MV) and are not associated with rinderpest virus (RPV) and peste des petits ruminants virus (PPRV) infection. However, it is possible that all morbilliviruses infect the CNS but in some hosts are rapidly cleared by the immune response. In this study, we assessed whether RPV and PPRV have the potential to be neurovirulent. We describe the outcome of infection, of selected mouse strains, with isolates of RPV, PPRV, PDV, porpoise morbillivirus (PMV), dolphin morbillivirus (DMV), and a wild-type strain of MV. In the case of RPV virus, strains with different passage histories have been examined. The results of experiments with these viruses were compared with those using neuroadapted and vaccine strains of MV, which acted as positive and negative controls respectively. Intracerebral inoculation with RPV (Saudi/81) and PPRV (Nigeria75/1) strains produced infection in Balb/C and Cd1, but not C57 suckling mice, whereas the CAM/RB rodent-adapted strain of MV infected all three strains of mice. Weanling mice were only infected by CAM/RB. Intranasal and intraperitoneal inoculation failed to produce infection with any virus strains. We have shown that, both RPV and PPRV, in common with other morbilliviruses are neurovirulent in a permissive system. Transient infection of the CNS of cattle and goats with RPV and PPRV, respectively, remains a possibility, which could provide relevant models for the initial stages of MV infection in humans.
Resumo:
INTRODUCTION: Breaching the skin's stratum corneum barrier raises the possibility of the administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. AREAS COVERED: Intradermal vaccine delivery holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed, which are discussed in this review. The importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination is also discussed. EXPERT OPINION: Microneedle-mediated vaccines hold enormous potential for patient benefit. However, in order for microneedle vaccine strategies to fulfill their potential, the proportion of an immune response that is due to the local action of delivered vaccines on skin antigen-presenting cells, and what is due to a systemic effect from vaccines reaching the systemic circulation, must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass-produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried-and-tested needle-and-syringe-based approaches.
Resumo:
A comparison of the clinicopathology of European bat lyssavirus (EBLV) types-1 and -2 and of rabies virus was undertaken. Following inoculation of mice at a peripheral site with these viruses, clinical signs of rabies and distribution of virus antigen in the mouse brain were examined. The appearance of clinical signs of disease varied both within and across the different virus species, with variation in incubation periods and weight loss throughout disease progression. The distribution of viral antigen throughout the regions of the brain examined was similar for each of the isolates during the different stages of disease progression, suggesting that antigen distribution was not associated with clinical presentation. However, specific regions of the brain including the cerebellum, caudal medulla, hypothalamus and thalamus, showed notable differences in the proportion of virus antigen positive cells present in comparison to other brain regions suggesting that these areas are important in disease development irrespective of virus species.
Resumo:
The immunogenicity of proteins encapsulated in poly(DL-lactide-co-glycolide) (PLG) microspheres has not been investigated to any extent in large animal models. In this study, IgG and IgA responses to ovalbumin (OVA), encapsulated in microspheres was investigated following intranasal inoculation into calves. Scanning electron microscopy and flow cytometric analysis demonstrated a uniform microsphere population with a diameter of <2.5 micrometers. Ovalbumin was released steadily from particles stored in PBS almost in a linear fashion, and after 4 weeks many particles showed cracks and fissures in their surface structure. Following intranasal inoculation of calves with different doses of encapsulated antigen, mean levels of ovalbumin-specific IgA were observed to increase steadily but significant differences in IgA levels (from the pre-inoculation level) were only observed following a second intranasal inoculation. With 0.5 and 1.0mg doses of antigen, ovalbumin-specific IgG was also detected in serum. Ovalbumin-specific IgA persisted in nasal secretions for a considerable period of time and were still detectable in four out of seven animals, 6 months after inoculation.
Resumo:
There are currently a number of different methods available to obtain anaesthesia in minor dermatological procedures. Although intradermal infiltration of 1% lidocaine is the favoured method for anaesthesia induction in laceration repair, it can cause significant pain in itself. Topical anaesthesia has been investigated as an alternative to infiltration anaesthesia, with the majority of studies looking at preparations of either TAC (tetracaine, adrenaline and cocaine) or LAT (lidocaine, adrenaline and tetracaine).