977 resultados para induction motor
Resumo:
Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs. Muscle Nerve 42: 825-828, 2010
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE: This study was conducted to investigate the success rate of using the facial motor evoked potential (FMEP) of orbicularis oculi and oris muscles for facial nerve function monitoring with use of a stepwise protocol, and its usefulness in predicting facial nerve outcome during cerebellopontine angle (CPA) surgeries. METHODS: FMEPs were recorded intraoperatively from 60 patients undergoing CPA surgeries. Transcranial electrocortical stimulation (TES) was performed using corkscrew electrodes positioned at hemispheric montage (C3/C4 and CZ). The contralateral abductor pollicis brevis muscle was used as the control response. Stimulation was always applied contralaterally to the affected side using 1, 3, or 5 rectangular pulses ranging from 200 to 600 V with 50 mu s of pulse duration and an interstimulus interval of 2 ms. Facial potentials were recorded from needles placed in the orbicularis oculi and oris muscles. RESULTS: FMEP from the orbicularis oris and oculi muscles could be reliably monitored in 86.7% and 85% of the patients, respectively. The immediate postoperative facial function correlated significantly with the FMEP ratio in the orbicularis oculi muscle at 80% amplitude ratio (P =.037) and orbicularis oris muscle at 35% ratio (P =.000). FMEP loss was always related to postoperative facial paresis, although in different degrees. CONCLUSION: FMEPs can be obtained reliably by using TES with 3 to 5 train pulses. Stable intraoperative FMEPs can predict a good postoperative outcome of facial function. However, further refinements of this technique are necessary to minimize artifacts and to make this method more reliable.
Resumo:
Parkinson`s disease (PD) is considered a multisystem disorder involving dopaminergic, noradrenergic. serotoninergic. and cholinergic systems, characterized by motor and non-motor symptoms. The causes of the non-motor symptoms in PD are multifactorial and unlikely to be explained by single lesions However, several evidence link them to damage of specific brainstem nuclei Numerous brainstem nuclei are engaged in fundamental homeostatic mechanisms, including gastrointestinal regulation, pain perception, mood control, and sleep-wake cycles In addition, these nuclei are locally interconnected in a complex manner and are subject to supraspinal control. The objective of this review is to provide a better overview of the current knowledge about the consequences of the involvement of specific brainstem nuclei to the most prevalent non-motor symptoms occurring in PD The multidisciplinary efforts of research directed to these non-nigral brainstem nuclei, in addition to the topographical and chronological spread of the disease - especially in the prodromal stages of PD. are discussed (C) 2009 Elsevier B V. All rights reserved
Resumo:
Aim: To provide new sustainable in vivo models of ventricular fibrillation in rabbits. Methods: New Zealand rabbits were submitted to anaesthesia and mechanical ventilation. after which ventricular fibrillation was induced through electrical stimulation (for 2 min at 100 Hz, with 2-ms pulses, 10 mA. and 10V) directly to the heart. To that end, the animals were divided into two groups: right ventricle (n = 11) and left ventricle (n = 11). In group right ventricle, the thoracic cavity was exposed, and a catheter was introduced into the right ventricle via the right jugular vein. in group left ventricle, the thorax remained closed, and the catheter was introduced into the left ventricle via the left common carotid artery (cervical access). Results: Sustained ventricular fibrillation was achieved in 100% of group right ventricle rabbits (n = 11 and in 82% of group left ventricle rabbits (n = 9). Conclusion: Both models proved appropriate for achieving sustained ventricular fibrillation. However, in view of the invasiveness of the procedure adopted in group right ventricle, the experimental conditions used in group left ventricle seemed more physiological and more effective in inducing sustained ventricular fibrillation. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aims. To investigate the effects of using bromazepam on the relative power in alpha while performing a typing task. Bearing in mind the particularities of each brain hemisphere, our hypothesis was that measuring the relative power would allow its to investigate the effects of bromazepam oil specific areas of the cortex. More, specifically, we expected to observe different patterns of powers in sensory-motor integration, attention and activation processes. Subjects and methods. The sample was made up of 39 subjects (15 males and 24 females) with a mean age of 30 +/- 10 years. The control (placebo) and experimental (3 mg and 6 mg of bromazepam) groups were trained ill the typing task with a randomised double-blind model. Results. A three-way ANOVA and Scheffe test were used to analyse interactions between the factors condition and moment, and between condition and sector Conclusions. The doses used ill this study facilitated motor performance of the typing task. Ill this study, the use of the drug did not prevent learning of the task, but it did appear to concentrate mental effort on more restricted and specific aspects of typing. It also seemed to influence the rhythm and effectiveness of the operations performed during mechanisms related to the encoding and storage often, information. Likewise, a predominance of activity was observed in the left (dominant) frontal area in the 3 mg bromazepam group, which indicates that this close of the drug affords the subject a greater degree of directionality of cortical activity for planning and performing the task. [REV NEUROL 2009; 49: 295-9]
Resumo:
Aims Cysteine- and glycine-rich protein 3/muscle LIM-domain protein (CRP3/MLP) mediates protein-protein interaction with actin filaments in the heart and is involved in muscle differentiation and vascular remodelling. Here, we assessed the induction of CRP3/MLP expression during arterialization in human and rat veins. Methods and results Vascular CRP3/MLP expression was mainly observed in arterial samples from both human and rat. Using quantitative real time RT-PCR, we demonstrated that the CRP3/MLP expression was 10 times higher in smooth muscle cells (SMCs) from human mammary artery (h-MA) vs. saphenous vein (h-SV). In endothelial cells (ECs), CRP3/MLP was scarcely detected in either h-MA or h-SV. Using an ex vivo flow through system that mimics arterial condition, we observed induction of CRP3/MLP expression in arterialized h-SV. Interestingly, the upregulation of CRP3/MLP was primarily dependent on stretch stimulus in SMCs, rather than shear stress in ECs. Finally, using a rat vein in vivo arterialization model, early (1-14 days) CRP3/MLP immunostaining was observed predominantly in the inner layer and later (28-90 days) it appeared more scattered in the vessel layers. Conclusion Here we provide evidence that CRP3/MLP is primarily expressed in arterial SMCs and that stretch is the main stimulus for CRP3/MLP induction in veins exposed to arterial haemodynamic conditions.
Resumo:
Introduction. A fundamental aspect of planning future actions is the performance and control of motor tasks. This behaviour is done through sensory-motor integration. Aim. To explain the electrophysiological mechanisms in the cortex (modifications to the alpha band) that are involved in anticipatory actions when individuals have to catch a free-falling object. Subjects and methods. The sample was made up of 20 healthy subjects of both sexes (11 males and 9 females) with ages ranging between 25 and 40 years (32.5 +/- 7.5) who were free of mental or physical diseases (previous medical history); the subjects were right-handed (Edinburgh Inventory) and were not taking any psychoactive or psychotropic substances at the time of the study. The experiment consisted in a task in which subjects had to catch freely falling objects. The experiment was made up of six blocks of 15 tests, each of which lasted 2 minutes and 30 seconds before and two seconds after each ball was dropped. Results. An interaction of the factors moment and position was only observed for the right parietooccipital cortex, in the combination of electrodes P4-O2. Conclusion. These findings suggest that the right parietooccipital cortex plays an important role in increasing expectation and swiftness in the process of preparing for a motor task.
Resumo:
Background Facial motor evoked potential (FMEP) amplitude ratio reduction at the end of the surgery has been identified as a good predictor for postoperative facial nerve outcome. We sought to investigate variations in FMEP amplitude and waveform morphology during vestibular schwannoma (VS) resection and to correlate these measures with postoperative facial function immediately after surgery and at the last follow-up. Methods Intraoperative orbicularis oculi and oris muscles FMEP data from 35 patients undergoing surgery for VS resection were collected, then analysed by surgical stage: initial, dural opening, tumour dissection (TuDis), tumour resection (TuRes) and final. Findings Immediately after surgery, postoperative facial function correlated significantly with the FMEP amplitude ratio during TuDis, TuRes and final stages in both the orbicularis oculi (p = 0.003, 0.055 and 0.028, respectively) and oris muscles (p = 0.002, 0.104 and 0.014, respectively). At the last follow-up, however, facial function correlated significantly with the FMEP amplitude ratio only during the TuDis (p = 0.005) and final (p = 0.102) stages for the orbicularis oris muscle. At both time points, postoperative facial paresis correlated significantly with FMEP waveform deterioration in orbicularis oculi during the final stage (immediate, p = 0.023; follow-up, p = 0.116) and in orbicularis oris during the TuDis, TuRes and final stages (immediate, p = 0.071, 0.000 and 0.001, respectively; follow-up, p = 0.015, 0.001 and 0.01, respectively). Conclusions FMEP amplitude ratio and waveform morphology during VS resection seem to represent independent quantitative parameters that can be used to predict postoperative facial function. Event-to-baseline FMEP monitoring is quite useful to dictate when intraoperative changes in surgical strategy are warranted to reduce the chances of facial nerve injury.