921 resultados para increased sensitivity
Resumo:
The Joint Nature Conservation Committee (JNCC) commissioned this project to generate an improved understanding of the sensitivities of blue mussel (Mytilus edulis) beds, found in UK waters, to pressures associated with human activities in the marine environment. The work will provide an evidence base that will facilitate and support management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. Blue mussel beds are identified as a Habitat of Principle Importance (HPI) under the Natural Environment and Rural Communities (NERC) Act 2006, as a Priority Marine Feature (PMF) under the Marine (Scotland) Act 2010, and included on the OSPAR (Annex V) list of threatened and declining species and habitats. The purpose of this project was to produce sensitivity assessments for the blue mussel biotopes included within the HPI, PMF and OSPAR habitat definitions, and clearly document the supporting evidence behind the assessments and any differences between them. A total of 20 pressures falling in five categories - biological, hydrological, physical damage, physical loss, and pollution and other chemical changes - were assessed in this report. The review examined seven blue mussel bed biotopes found on littoral sediment and sublittoral rock and sediment. The assessments were based on the sensitivity of M. edulis rather than associated species, as M. edulis was considered the most important characteristic species in blue mussel beds. To develop each sensitivity assessment, the resistance and resilience of the key elements are assessed against the pressure benchmark using the available evidence gathered in this review. The benchmarks were designed to provide a ‘standard’ level of pressure against which to assess sensitivity. Blue mussel beds were highly sensitive to a few human activities: • introduction or spread of non-indigenous species (NIS); • habitat structure changes - removal of substratum (extraction); and • physical loss (to land or freshwater habitat). Physical loss of habitat and removal of substratum are particularly damaging pressures, while the sensitivity of blue mussel beds to non-indigenous species depended on the species assessed. Crepidula fornicata and Crassostrea gigas both had the potential to outcompete and replace mussel beds, so resulted in a high sensitivity assessment. Mytilus spp. populations are considered to have a strong ability to recover from environmental disturbance. A good annual recruitment may allow a bed to recovery rapidly, though this cannot always be expected due to the sporadic nature of M. edulis recruitment. Therefore, blue mussel beds were considered to have a 'Medium' resilience (recovery within 2-10 years). As a result, even where the removal or loss of proportion of a mussel bed was expected due to a pressure, a sensitivity of 'Medium' was reported. Hence, most of the sensitivities reported were 'Medium'. It was noted, however, that the recovery rates of blue mussel beds were reported to be anywhere between two years to several decades. In addition, M. edulis is considered very tolerant of a range of physical and chemical conditions. As a result, blue mussel beds were considered to be 'Not sensitive' to changes in temperature, salinity, de-oxygenation, nutrient and organic enrichment, and substratum type, at the benchmark level of pressure. The report found that no distinct differences in overall sensitivity exist between the HPI, PMF and OSPAR definitions. Individual biotopes do however have different sensitivities to pressures, and the OSPAR definition only includes blue mussel beds on sediment. These differences were determined by the position of the habitat on the shore and the sediment type. For example, the infralittoral rock biotope (A3.361) was unlikely to be exposed to pressures that affect sediments. However in the case of increased water flow, mixed sediment biotopes were considered more stable and ‘Not sensitive’ (at the benchmark level) while the remaining biotopes were likely to be affected.
Using a clearly documented, evidence-based approach to create sensitivity assessments allows the assessment basis and any subsequent decision making or management plans to be readily communicated, transparent and justifiable. The assessments can be replicated and updated where new evidence becomes available ensuring the longevity of the sensitivity assessment tool. For every pressure where sensitivity was previously assessed as a range of scores in MB0102, the assessments made by the evidence review have supported one of the MB0102 assessments. The evidence review has reduced the uncertainty around assessments previously undertaken in the MB0102 project (Tillin et al., 2010) by assigning a single sensitivity score to the pressures as opposed to a range. Finally, as blue mussel bed habitats also contribute to ecosystem function and the delivery of ecosystem services, understanding the sensitivity of these biotopes may also support assessment and management in regard to these. Whatever objective measures are applied to data to assess sensitivity, the final sensitivity assessment is indicative. The evidence, the benchmarks, the confidence in the assessments and the limitations of the process, require a sense-check by experienced marine ecologists before the outcome is used in management decisions.
Resumo:
Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.
Resumo:
Aim: To determine the risk of malignancy and mortality in patients with a positive endomysial or anti-gliadin antibody test in Northern Ireland.
Methods: A population-based retrospective cohort study design was used. Laboratory test results used in the diagnosis of coeliac disease were obtained from the Regional Immunology Laboratory, cancer statistics from the Northern Ireland Cancer Registry and mortality statistics from the General Registrar Office, Northern Ireland. Age standardized incidence ratios of malignant neoplasms and standardized mortality ratios of all-cause and cause-specific mortality were calculated.
Results: A total of 13 338 people had an endomysial antibody and/or an anti-gliadin antibody test in Northern Ireland between 1993 and 1996. There were 490 patients who tested positive for endomysial antibodies and they were assumed to have coeliac disease. There were 1133 patients who tested positive for anti-gliadin anti-bodies and they were defined as gluten sensitive. Malignant neoplasms were not significantly associated with coeliac disease; however, all-cause mortality was significantly increased following diagnosis. The standardized incidence and mortality ratios for non-Hodgkin's lymphoma were increased in coeliac disease patients but did not reach statistical significance. Lung and breast cancer incidence were significantly lower and all-cause mortality, mortality from malignant neoplasms, non-Hodgkin's lymphoma and digestive system disorders were significantly higher in gluten sensitive patients compared to the Northern Ireland population.
Conclusion: Patients with coeliac disease or gluten sensitivity had higher mortality rates than the Northern Ireland population. This association persists more than one year after diagnosis in patients testing positive for anti-gliadin antibodies. Breast cancer is significantly reduced in the cohort of patients with gluten sensitivity. © 2007 The WJG Press. All rights reserved.
Resumo:
In this paper, an analysis is performed in order to determine the effects that variations in circuit component values, frequency, and duty cycle have on the performance of the newly introduced inverse Class-E amplifier. Analysis of the inverse Class-E amplifier under the generalized condition of arbitrary duty cycle is performed and it is shown that the inverse Class-E amplifier is reasonably tolerant to circuit parameter variations. When compared to the conventional Class-E amplifier the inverse Class-E amplifier offers the potential for high efficiency at increased output power as well as higher peak output power levels than are available with a conventional Class-E amplifier. Further the inverse Class-E amplifier provides more flexibility for deployment with a pulsewidth modulator as the means of producing full-carrier amplitude modulation (AM) due to its ability to operate to high AM modulation indices.
Resumo:
Fucus and Laminaria species, dominant seaweeds in the intertidal and subtidal zones of the temperate North Atlantic, experience tidal cycles that are not synchronized with light:dark (L:D) cycles. To investigate how nutrient assimilation is affected by light cycles, the activity of nitrate reductase (NR) was examined in thalli incubated in outdoor tanks with flowing seawater and natural L:D cycles. NR activity in Laminaria digitata (Huds.) Lamour. showed strong diel patterns with low activities in darkness and peak activities near midday. This diel pattern was controlled by light but not by a circadian rhythm. In contrast, there was no diel variation in NR activity in Fucus serratus L., F. vesiculosus (L.) Lamour., and F. spiralis L. either collected directly from the shore or maintained in the outdoor tanks. In laboratory cultures, transfer to continuous darkness suppressed NR activity in L. digitata, but not in F. vesiculosus; continuous light increased NR activity in L. digitata but decreased activity in F. vesiculosus. Furthermore, 4 d enrichment with ammonium (50 mu mol . L-1 pulses), resulted in NR activity declining by > 80% in L. digitata, but no significant changes in F. serratus. Seasonal differences in maximum NR activity were present in both genera with activities highest in late winter and lowest in summer. This is the first report of NR activity in any alga that is not strongly regulated by light and ammonium. Because light and tidal emersion do not always coincide, Fucus species may have lost the regulation of NR by light that has been observed in other algae and higher plants.
Resumo:
Maintenance of oxygen homeostasis is a key requirement to ensure normal mammalian cell growth and differentiation. Hypoxia arises when oxygen demand exceeds supply, and is a feature of multiple human diseases including stroke, cancer and renal fibrosis. We have investigated the effect of hypoxia on kidney cells, and observed that insulin-induced cell viability is increased in hypoxia. We have characterized the role of protein kinase B (PKB/ Akt) in these cells as a potential mediator of this effect. PKB/Akt activity was increased by low oxygen concentrations in kidney cells, and insulin-stimulated activation of PKB/Akt was stronger, more rapid and more sustained in hypoxia. Reduction of HIF1 alpha levels using antimycin-A or siRNA targeting HlF1 alpha did not affect PKB/Akt activation in hypoxia. Pharmacologic stabilization of HIF1 alpha independent of hypoxia did not increase insulin-stimulated PKB/Akt activation. Although increased insulin-stimulated cell viability was observed in hypoxia, no differences in the degree of insulin-stimulated glucose uptake were observed in L6 muscle cells in hypoxia compared to normoxia. Thus, PKB/Akt may regulate specific cellular responses to growth factors such as insulin under adverse conditions such as hypoxia. alpha 2007 Elsevier GmbH. All rights reserved.
Resumo:
Background and aims
Public health campaigns recommend increased fruit and vegetable (FV) consumption as an effective means of cardiovascular risk reduction. During an 8 week randomised control trial among hypertensive volunteers, we noted significant improvements in endothelium-dependent vasodilatation with increasing FV consumption. Circulating indices of inflammation, endothelial activation and insulin resistance are often employed as alternative surrogates for systemic arterial health. The responses of several such biomarkers to our previously described FV intervention are reported here.
Methods and results
Hypertensive volunteers were recruited from medical outpatient clinics. After a common 4 week run-in period during which FV consumption was limited to 1 portion per day, participants were randomised to 1, 3 or 6 portions daily for 8 weeks. Venous blood samples for biomarker analyses were collected during the pre and post-intervention vascular assessments. A total of 117 volunteers completed the 12 week study. Intervention-related changes in circulating levels of high sensitivity C-reactive protein (hsCRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion molecule-1 (sVCAM-1), von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1) did not differ significantly between FV groups. Similarly, there were no significant between group differences of change in homeostasis model assessment (HOMA) scores.
Conclusions
Despite mediating a significant improvement in acetylcholine induced vasodilatation, increased FV consumption did not affect a calculated measure of insulin resistance or concentrations of the circulating biomarkers measured during this study. Functional indices of arterial health such as endothelium-dependent vasomotion are likely to provide more informative cardiovascular end-points during short-term dietary intervention trials.
Resumo:
ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.
Resumo:
BACKGROUND: Pancreatic adenocarcinoma is a lethal disease with 5-year survival of less than 5%. 5-fluorouracil (5-FU) is a principal first-line therapy, but treatment only extends survival modestly and is seldom curative. Drug resistance and disease recurrence is typical and there is a pressing need to overcome this. To investigate acquired 5-FU resistance in pancreatic adenocarcinoma, we established chemoresistant monoclonal cell lines from the Panc 03.27 cell line by long-term exposure to increasing doses of 5-FU.
RESULTS: 5-FU-resistant cell lines exhibited increased expression of markers associated with multidrug resistance explaining their reduced sensitivity to 5-FU. In addition, 5-FU-resistant cell lines showed alterations typical for an epithelial-to-mesenchymal transition (EMT), including upregulation of mesenchymal markers and increased invasiveness. Microarray analysis revealed the L1CAM pathway as one of the most upregulated pathways in the chemoresistant clones, and a significant upregulation of L1CAM was seen on the RNA and protein level. In pancreatic cancer, expression of L1CAM is associated with a chemoresistant and migratory phenotype. Using esiRNA targeting L1CAM, or by blocking the extracellular part of L1CAM with antibodies, we show that the increased invasiveness observed in the chemoresistant cells functionally depends on L1CAM. Using esiRNA targeting β-catenin and/or Slug, we demonstrate that in the chemoresistant cell lines, L1CAM expression depends on Slug rather than β-catenin.
CONCLUSION: Our findings establish Slug-induced L1CAM expression as a mediator of a chemoresistant and migratory phenotype in pancreatic adenocarcinoma cells.
Resumo:
What is the best luminance contrast weighting-function for image quality optimization? Traditionally measured contrast sensitivity functions (CSFs), have been often used as weighting-functions in image quality and difference metrics. Such weightings have been shown to result in increased sharpness and perceived quality of test images. We suggest contextual CSFs (cCSFs) and contextual discrimination functions (cVPFs) should provide bases for further improvement, since these are directly measured from pictorial scenes, modeling threshold and suprathreshold sensitivities within the context of complex masking information. Image quality assessment is understood to require detection and discrimination of masked signals, making contextual sensitivity and discrimination functions directly relevant. In this investigation, test images are weighted with a traditional CSF, cCSF, cVPF and a constant function. Controlled mutations of these functions are also applied as weighting-functions, seeking the optimal spatial frequency band weighting for quality optimization. Image quality, sharpness and naturalness are then assessed in two-alternative forced-choice psychophysical tests. We show that maximal quality for our test images, results from cCSFs and cVPFs, mutated to boost contrast in the higher visible frequencies.
Resumo:
A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity
Resumo:
Developmental coordination disorder (DCD) is a motor coordination disorder that is characterized by impairment of motor skills which leads to challenges with performing activities of daily living. Children with DCD have been shown to be less physically active and have increased body fatness. This is an important finding since a sedentary lifestyle and obesity are risk factors for cardiovascular disease. One indicator of cardiovascular health is baroreflex sensitivity (BRS), which is a measure of short term BP regulation that is accomplished through changes in HR. Diminished BRS is predictive of cardiovascular morbidity and mortality. The purpose of this study was to investigate BRS in 117 children aged 12 to 13 years with probable DCD (pOCO) and their matched controls with normal coordination. Following 15 minutes of supine rest, five minutes of continuous beat-by-beat blood pressure (Finapres) and RR interval were recorded (standard ECG). Spectral indices were computed using Fast Fourier Transform and transfer function analysis was used to compute BRS. High frequency and low frequency power spectral areas were set to 0.15-0.6 Hz and 0.04-0.15 Hz, respectively. BRS was compared between groups with an independent t-test and the difference was not significant. It is likely that a difference in BRS was not seen between groups since the difference in BMI between groups was small. As well, differences in BRS may not have manifested yet at this early age. However, the cardiovascular health of this population still deserves attention since differences in body composition and fitness were found between groups.
Resumo:
Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus) conservation) and delayed harvest areas (created for American marten (Martes americana atrata) conservation). This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options that specify deferment and timing of harvest for large blocks helped ensure the stable presence of an intact mature forest matrix over time. The management scenario that focused on maintaining compositional targets best supported biodiversity objectives by providing the composition patterns required by the 13 focal species, but this scenario may be improved by adding some broad-scale spatial objectives to better maintain large blocks of interior forest habitat through time.