725 resultados para image algebra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to propose a strategy for finding reasonable compromises between image noise and dose as a function of patient weight. Weighted CT dose index (CTDI(w)) was measured on a multidetector-row CT unit using CTDI test objects of 16, 24 and 32 cm in diameter at 80, 100, 120 and 140 kV. These test objects were then scanned in helical mode using a wide range of tube currents and voltages with a reconstructed slice thickness of 5 mm. For each set of acquisition parameter image noise was measured and the Rose model observer was used to test two strategies for proposing a reasonable compromise between dose and low-contrast detection performance: (1) the use of a unique noise level for all test object diameters, and (2) the use of a unique dose efficacy level defined as the noise reduction per unit dose. Published data were used to define four weight classes and an acquisition protocol was proposed for each class. The protocols have been applied in clinical routine for more than one year. CTDI(vol) values of 6.7, 9.4, 15.9 and 24.5 mGy were proposed for the following weight classes: 2.5-5, 5-15, 15-30 and 30-50 kg with image noise levels in the range of 10-15 HU. The proposed method allows patient dose and image noise to be controlled in such a way that dose reduction does not impair the detection of low-contrast lesions. The proposed values correspond to high- quality images and can be reduced if only high-contrast organs are assessed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing spatial, spectral, and temporal resolutions of images, acquired over a reasonably sized image extent, result in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is very attractive for monitoring, management, and scienti c activities. With Moore's Law alive and well, more and more parallelism is introduced into all computing platforms, at all levels of integration and programming to achieve higher performance and energy e ciency. Being the geometric calibration process one of the most time consuming processes when using remote sensing images, the aim of this work is to accelerate this process by taking advantage of new computing architectures and technologies, specially focusing in exploiting computation over shared memory multi-threading hardware. A parallel implementation of the most time consuming process in the remote sensing geometric correction has been implemented using OpenMP directives. This work compares the performance of the original serial binary versus the parallelized implementation, using several multi-threaded modern CPU architectures, discussing about the approach to nd the optimum hardware for a cost-e ective execution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Many countries used the PGMI (P=perfect, G=good, M=moderate, I=inadequate) classification system for assessing the quality of mammograms. Limits inherent to the subjectivity of this classification have been shown. Prior to introducing this system in Switzerland, we wanted to better understand the origin of this subjectivity in order to minimize it. Our study aimed at identifying the main determinants of the variability of the PGMI system and which criteria are the most subjected to subjectivity. Methods and Materials: A focus group composed of 2 experienced radiographers and 2 radiologists specified each PGMI criterion. Ten raters (6 radiographers and 4 radiologists) evaluated twice a panel of 40 randomly selected mammograms (20 analogic and 20 digital) according to these specified PGMI criteria. The PGMI classification was assessed and the intra- and inter-rater reliability was tested for each professional group (radiographer vs radiologist), image technology (analogic vs digital) and PGMI criterion. Results: Some 3,200 images were assessed. The intra-rater reliability appears to be weak, particularly in respect to inter-rater variability. Subjectivity appears to be largely independent of the professional group and image technology. Aspects of the PGMI classification criteria most subjected to variability were identified. Conclusion: Post-test discussions enabled to specify more precisely some criteria. This should reduce subjectivity when applying the PGMI classification system. A concomitant, important effort in training radiographers is also necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate and compare organ doses delivered to patients in wrist and petrous bone examinations using a multislice spiral computed tomography (CT) and a C-arm cone-beam CT equipped with a flat-panel detector (XperCT). For this purpose, doses to the target organ, i.e. wrist or petrous bone, together with those to the most radiosensitive nearby organs, i.e. thyroid and eye lens, were measured and compared. Furthermore, image quality was compared for both imaging systems and different acquisition modes using a Catphan phantom. Results show that both systems guarantee adequate accuracy for diagnostic purposes for wrist and petrous bone examinations. Compared with the CT scanner, the XperCT system slightly reduces the dose to target organs and shortens the overall duration of the wrist examination. In addition, using the XperCT enables a reduction of the dose to the eye lens during head scans (skull base and ear examinations).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During adolescence, nutrition needs are high; however the literature shows that few adolescents are following standardized nutritional requirements. A few weeks before an intervention about nutrition to high school adolescents in Lausanne, they were invited to fill in a self-reported questionnaire about their nutrition modes and habits, and their self-image satisfaction (N = 198). Results show that only 5% of youth are eating 5 fruits and vegetables per day and only 29% 3 to 5 dairy products. 21% of female and 6% of boys are not satisfied about their self-image, and those exhibiting a poor self-image tend to adopt health compromising eating patterns in a higher proportion. During adolescence it is important not only to investigate the nutritional habits but also one's self image.

Relevância:

20.00% 20.00%

Publicador: