958 resultados para human cell


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The delivery of copper to specific sites within the cell is mediated by distinct intracellular carrier proteins termed copper chaperones. Previous studies in Saccharomyces cerevisiae suggested that the human copper chaperone HAH1 may play a role in copper trafficking to the secretory pathway of the cell. In this current study, HAH1 was detected in lysates from multiple human cell lines and tissues as a single-chain protein distributed throughout the cytoplasm and nucleus. Studies with a glutathione S-transferase-HAH1 fusion protein demonstrated direct protein–protein interaction between HAH1 and the Wilson disease protein, which required the cysteine copper ligands in the amino terminus of HAH1. Consistent with these in vitro observations, coimmunoprecipitation experiments revealed that HAH1 interacts with both the Wilson and Menkes proteins in vivo and that this interaction depends on available copper. When these studies were repeated utilizing three disease-associated mutations in the amino terminus of the Wilson protein, a marked diminution in HAH1 interaction was observed, suggesting that impaired copper delivery by HAH1 constitutes the molecular basis of Wilson disease in patients harboring these mutations. Taken together, these data provide a mechanism for the function of HAH1 as a copper chaperone in mammalian cells and demonstrate that this protein is essential for copper homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Normal mammalian cells arrest primarily in G1 in response to N-(phosphonacetyl)-l-aspartate (PALA), which starves them for pyrimidine nucleotides, and do not generate or tolerate amplification of the CAD gene, which confers resistance to PALA. Loss of p53, accompanied by loss of G1 arrest, permits CAD gene amplification and the consequent formation of PALA-resistant colonies. We have found rat and human cell lines that retain wild-type p53 but have lost the ability to arrest in G1 in response to PALA. However, these cells still fail to give PALA-resistant colonies and are protected from DNA damage through the operation of a second checkpoint that arrests them reversibly within S-phase. This S-phase arrest, unmasked in the absence of the G1 checkpoint, is dependent on p53 and independent of p21/waf1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The herpesvirus entry mediator C (HveC), previously known as poliovirus receptor-related protein 1 (PRR1), and the herpesvirus Ig-like receptor (HIgR) are the bona fide receptors employed by herpes simplex virus-1 and -2 (HSV-1 and -2) for entry into the human cell lines most frequently used in HSV studies. They share an identical ectodomain made of one V and two C2 domains and differ in transmembrane and cytoplasmic regions. Expression of their mRNA in the human nervous system suggests possible usage of these receptors in humans in the path of neuron infection by HSV. Glycoprotein D (gD) is the virion component that mediates HSV-1 entry into cells by interaction with cellular receptors. We report on the identification of the V domain of HIgR/PRR1 as a major functional region in HSV-1 entry by several approaches. First, the epitope recognized by mAb R1.302 to HIgR/PRR1, capable of inhibiting infection, was mapped to the V domain. Second, a soluble form of HIgR/PRR1 consisting of the single V domain competed with cell-bound full-length receptor and blocked virion infectivity. Third, the V domain was sufficient to mediate HSV entry, as an engineered form of PRR1 in which the two C2 domains were deleted and the V domain was retained and fused to its transmembrane and cytoplasmic regions was still able to confer susceptibility, although at reduced efficiency relative to full-length receptor. Consistently, transfer of the V domain of HIgR/PRR1 to a functionally inactive structural homologue generated a chimeric receptor with virus-entry activity. Finally, the single V domain was sufficient for in vitro physical interaction with gD. The in vitro binding was specific as it was competed both by antibodies to the receptor and by a mAb to gD with potent neutralizing activity for HSV-1 infectivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herpes simplex virus vectors are being developed for delivery and expression of human genes to the central nervous system, selective destruction of cancer cells, and as carriers for genes encoding antigens that induce protective immunity against infectious agents. Vectors constructed to meet these objectives must differ from wild-type virus with respect to host range, reactivation from latency, and expression of viral genes. The vectors currently being developed are (i) helper free amplicons, (ii) replication defective viruses, and (iii) genetically engineered replication competent viruses with restricted host range. Whereas the former two types of vectors require stable, continuous cell lines expressing viral genes for their replication, the replication competent viruses will replicate on approved primary human cell strains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report demonstrates that the investigational prostatic carcinoma marker known as the prostate-specific membrane antigen (PSM) possesses hydrolytic activity with the substrate and pharmacologic properties of the N-acetylated alpha-linked acidic dipeptidase (NAALADase). NAALADase is a membrane hydrolase that has been characterized in the mammalian nervous system on the basis of its catabolism of the neuropeptide N-acetylaspartylglutamate (NAAG) to yield glutamate and N-acetylaspartate and that has been hypothesized to influence glutamatergic signaling processes. The immunoscreening of a rat brain cDNA expression library with anti-NAALADase antisera identified a 1428-base partial cDNA that shares 86% sequence identity with 1428 bases of the human PSM cDNA [Israeli, R. S., Powell, C. T., Fair, W. R. & Heston, W.D.W. (1993) Cancer Res. 53, 227-230]. A cDNA containing the entire PSM open reading frame was subsequently isolated by reverse transcription-PCR from the PSM-positive prostate carcinoma cell line LNCaP. Transient transfection of this cDNA into two NAALADase-negative cell lines conferred NAAG-hydrolyzing activity that was inhibited by the NAALADase inhibitors quisqualic acid and beta-NAAG. Thus we demonstrate a PSM-encoded function and identify a NAALADase-encoding cDNA. Northern analyses identify at least six transcripts that are variably expressed in NAALADase-positive but not in NAALADase-negative rat tissues and human cell lines; therefore, PSM and/or related molecular species appear to account for NAAG hydrolysis in the nervous system. These results also raise questions about the role of PSM in both normal and pathologic prostate epithelial-cell function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The IFNAR chain of the type I interferon (IFN) receptor (IFNIR) undergoes rapid ligand-dependent tyrosine phosphorylation and acts as a species-specific transducer for type I IFN action. Using the vaccinia/T7 expression system to amplify IFNAR expression, we found that human HeLa-S3 cells transiently express high levels of cell surface IFNAR chains (approximately 250,000 chains per cell). Metabolic labeling and immunoblot analysis of transfected HeLa cells show that the IFNAR chain is initially detected as 65-kDa and 98-kDa precursors, and then as the 130-kDa mature protein. Due to variation in N-glycosylation, the apparent molecular mass of the mature IFNAR chain varies from 105 to 135 kDa in different cells. IFNIR structure was characterized in various human cell lines by analyzing 125I-labeled IFN cross-linked complexes recognized by various antibodies against IFNIR subunits and JAK protein-tyrosine kinases. Precipitation of cross-linked material from Daudi cells with anti-IFNAR antibodies showed that IFNAR was present in a 240-kDa complex. Precipitation of cross-linked material from U937 cells with anti-TYK2 sera revealed a 240-kDa complex, which apparently did not contain IFNAR and was not present in IFN-resistant HEC1B cells. The tyrosine phosphorylation and down-regulation of the IFNAR chain were induced by type I IFN in several human cell lines of diverse origins but not in HEC1B cells. However, of type I IFNs, IFN-beta uniquely induced the tyrosine phosphorylation of a 105-kDa protein associated with the IFNAR chain in two lymphoblastoid cell lines (Daudi and U266), demonstrating the specificity of transmembrane signaling for IFN-beta and IFN-alpha through the IFNAR chain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A monomorphic anti-HLA-G monoclonal antibody (mAb) was obtained by immunization of HLA-B27/human beta 2-microglobulin double-transgenic mice with transfected murine L cells expressing both HLA-G and human beta 2-microglobulin. This mAb, designated BFL.1, specifically recognizes, by flow cytometry analysis, the immunizing HLA-G-expressing cells, whereas it does not bind to parental untransfected or to HLA-B7- and HLA-A3-transfected L cells, suggesting that it distinguishes between classical HLA-A and -B and nonclassical HLA-G class I molecules. This was further assessed by the absence of BFL.1 reactivity with a number of human cell lines known to express classical HLA class I proteins. In addition, we showed that the BFL.1 mAb also labels HLA-G-naturally-expressing JEG-3 and HLA-G-transfected JAR human choriocarcinoma cell lines as well as a subpopulation of first-trimester placental cytotrophoblast cells. Further biochemical studies were performed by immunoprecipitation of biotinylated membrane lysates: BFL.1, like the monomorphic W6/32 mAb, immunoprecipitated a 39-kDa protein in HLA-G-expressing cell lines, a size corresponding to the predicted full-length HLA-G1 isoform. However, in contrast to W6/32, which immunoprecipitates both classical and nonclassical HLA class I heavy chains, BFL.1 mAb does not recognize the class Ia products. Such a mAb should be a useful tool for analysis of HLA-G protein expression in various normal and pathological human tissues and for determination of the function(s) of translated HLA-G products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

p16ink4 has been implicated as a tumor suppressor that is lost from a variety of human tumors and human cell lines. p16ink4 specifically binds and inhibits the cyclin-dependent kinases 4 and 6. In vitro, these kinases can phosphorylate the product of the retinoblastoma tumor suppressor gene. Thus, p16ink4 could exert its function as tumor suppressor through inhibition of phosphorylation and functional inactivation of the retinoblastoma protein. Here we show that overexpression of p16ink4 in certain cell types will lead to an arrest in the G1 phase of the cell cycle. In addition, we show that p16ink4 can only suppress the growth of human cells that contain functional pRB. Moreover, we have compared the effect of p16ink4 expression on embryo fibroblasts from wild-type and RB homozygous mutant mice. Wild-type embryo fibroblasts are inhibited by p16ink4, whereas the RB nullizygous fibroblasts are not. These data not only show that the presence of pRB is crucial for growth suppression by p16ink4 but also indicate that the pRB is the critical target acted upon by cyclin D-dependent kinases in the G1 phase of the cell cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The retinoblastoma protein (Rb) is a target of viral oncoproteins. To explore the hypothesis that viral proteins may be structural mimics of cellular proteins, we have searched cDNA libraries for Rb-binding proteins. We report here the cloning of a cDNA for the protein RIZ from rat and human cells. RIZ is a 250-kDa nuclear protein containing eight zinc-finger motifs. It contains an Rb-binding motif that shares an antigenic epitope with the C terminus of E1A. A domain is conserved between RIZ and the PRDI-BF1/Blimp-1 differentiation factor. Other motifs of RIZ include putative GTPase and SH3 (src homology domain 3) domains. RIZ is preferentially expressed in both adult and embryonic rat neuroendocrine tissues. It is also expressed in human retinoblastoma cells and at low levels in all other human cell lines examined. While the function of RIZ is not yet clear, its structure and pattern of expression suggest a role for RIZ in transcriptional regulation during neuronal differentiation and pathogenesis of retinoblastoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, two cell surface molecules, CD46 and moesin, have been found to be functionally associated with measles virus (MV) infectivity of cells. We investigated the receptor usage of MV wild-type, subacute sclerosing panencephalitis, and vaccine strains and their effect on the down-regulation of CD46 after infection. We found that the infection of human cell lines with all 19 MV strains tested was inhibitable with antibodies against CD46. In contrast, not all strains of MV led to the downregulation of CD46 following infection. The group of CD46 non-downregulating strains comprised four lymphotropic wild-type isolates designated AB, DF, DL, and WTF. Since the downregulation of CD46 is caused by interaction with newly synthesized MV hemagglutinin (MV-H), we tested the capability of recombinant MV-H proteins to downregulate CD46. Recombinant MV-H proteins of MV strains Edmonston, Halle, and CM led to the down-regulation of CD46, whereas those of DL and WTF did not. This observed differential downregulation by different MV strains has profound consequences, since lack of CD46 on the cell surface leads to susceptibility of cells to complement lysis. These results suggest that lymphotropic wild-type strains of MV which do not downregulate CD46 may have an advantage for replication in vivo. The relatively weak immune response against attenuated vaccine strains of MV compared with wild-type strains might be related to this phenomenon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ubiquitin-activating enzyme, E1, is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 exists as two isoforms in human cells which are separable by electrophoresis. These isoforms migrate with apparent molecular sizes of 110 kDa and 117 kDa in SDS/polyacrylamide gels. Immunoprecipitation of E1 from lysates of HeLa cells metabolically labeled with [32P]phosphate indicated the presence of a phosphorylated form of E1 which migrates at 117 kDa. Phospho amino acid analysis identified serine as the phosphorylated residue in E1. Phosphorylated E1 was also detected in normal and transformed cells from another human cell line. Phosphatase-catalyzed dephosphorylation of E1 in vitro did not eliminate the 117-kDa E1 isoform detected by Coomassie staining after SDS/polyacrylamide gel electrophoresis, thereby demonstrating that phosphorylation is not the sole structural feature differentiating the isoforms of E1. These observations suggest new hypotheses concerning mechanisms of metabolic regulation of the ubiquitin conjugation pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ataxia-telangiectasia mutated (ATM) protein kinase is activated in response to ionizing radiation (IR) and activates downstream DNA-damage signaling pathways. Although the role of ATM in the cellular response to ionizing radiation has been well characterized, its role in response to other DNA-damaging agents is less well defined. We previously showed that genistein, a naturally occurring isoflavonoid, induced increased ATM protein kinase activity, ATM-dependent phosphorylation of p53 on serine 15 and activation of the DNA-binding properties of p53. Here. we show that genistein also induces phosphorylation of p53 at serines 6, 9, 20,46, and 392, and that genistein-induced accumulation and phosphorylation of p53 is reduced in two ATM-deficient human cell lines. Also, we show that genistein induces phosphorylation of ATM on serine 1981 and phosphorylation of histone H2AX on serine 139. The related bioflavonoids, daidzein and biochanin A, did not induce either phosphorylation of p53 or ATM at these sites. Like genistein, quercetin induced phosphorylation of ATM on serine 198 1, and ATM-dependent phosphorylation of histone H2AX on serine 139; however, p53 accumulation and phosphorylation on serines 6, 9, 15, 20, 46, and 392 occurred in ATM-deficient cells, indicating that ATM is not required for quercetin-induced phosphorylation of p53. Our data suggest that genistein and quercetin induce different DNA-damage induced signaling pathways that, in the case of genistein, are highly ATM-dependent but, in the case of quercetin, may be ATM-dependent only for some downstream targets. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A primary haplotype (H1) of the microtubule-associated protein Tau (MAPT) gene is associated with Parkinson's disease (PD). However, the mechanism for disease susceptibility remains unknown. We examined the promoter region of MAPT and identified single nucleotide polymorphisms and insertions of 1 to 11 nucleotides. These polymorphisms corresponded to the previously characterized haplotypes, H1 and H2, as well as a novel variant of the H1 haplotype, H1'. As observed in other studies, we demonstrated a significant association with the H1/H1 promoter genotype and PD in a cohort of 206 idiopathic late-onset cases. This is in contrast with a panel of 13 early-onset PD patients, for whom we did not detect any mutations in MAPT. By examining single nucleotide polymorphisms in adjacent genes, we showed that linkage disequilibrium does not extend beyond the MAPT haplotype to neighboring genes. To define the mechanism of disease susceptibility, we examined the transcriptional activity of the promoter haplotypes using a luciferase reporter assay. We demonstrated in two human cell lines, SK-N-MC and 293, that the H1 haplotype was more efficient at driving gene expression than the H2 haplotype. Our data suggest that an increase in expression of the MAPT gene is a susceptibility factor in idiopathic PD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another I I species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.