956 resultados para heart ventricle isometric contraction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between obesity and heart rate variability (HRV) has been studied in adults and adolescents, but is not determined in young pediatrics. The purpose of this study was to assess autonomic activity using HRV in a pediatric population. We hypothesized that obese children would have reduced parasympathetic and increased sympathetic activity compared to age-matched subjects. 42 pediatric subjects (ages 3-5) were classified into 3 groups based on body mass index-for-age; normal, overweight and obese. HRV and respiratory rate were recorded during 3 minute baseline, 2 minute isometric handgrip and 3 minute recovery. HRV was analyzed in the time domain [heart rate (HR), RR interval (RRI) and RRI standard deviation (RRISD)] and frequency domain [low frequency (LF), high frequency (HF) and LF/HF ratio] using repeated measures ANOVA. Spearman’s correlations were used to examine the relations between BMI and HRV at rest. Significant condition effects were found between baseline, exercise and recovery, but these responses were not significantly different between the normal, overweight and obese children. BMI was negatively correlated with LF/HF, while BMI was positively correlated with RRISD, LF, HF and nHF. Our data demonstrate that higher BMI in the pediatric population is correlated with higher parasympathetic and lower sympathetic activity. These findings are contrary to HRV responses observed in adults and adolescents, suggesting complex relationships between age, obesity and autonomic control of the heart. The data supports the concept of an age reliance of HRV and a novel relationship between adiposity and body mass index in 3-5 year olds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Newborns with hypoplastic left heart syndrome (HLHS) or right heart syndrome or other malformations with a single ventricle physiology and associated hypoplasia of the great arteries continue to be a challenge in terms of survival. The vast majority of these forms of congenital heart defects relate to abnormal morphogenesis during early intrauterine development and can be diagnosed accurately by fetal echocardiography. Early knowledge of these conditions not only permits a better understanding of the progression of these malformations but encourages some researchers to explore new minimally invasive therapeutic options with a view to early pre- and postnatal cardiac palliation. DATA SOURCES: PubMed database was searched with terms of "congenital heart defects", "fetal echocardiography" and "neonatal cardiac surgery". RESULTS: At present, early prenatal detection has been applied for monitoring pregnancy to avoid intrauterine cardiac decompensation. In principle, the majority of congenital heart defects can be diagnosed by prenatal echocardiography and the detection rate is 85%-95% at tertiary perinatal centers. The majority, particularly of complex congenital lesions, show a steadily progressive course including subsequent secondary phenomena such as arrhythmias or myocardial insufficiency. So prenatal treatment of an abnormal fetus is an area of perinatal medicine that is undergoing a very dynamic development. Early postnatal treatment is established for some time, and prenatal intervention or palliation is at its best experimental stage in individual cases. CONCLUSION: The upcoming expansion of fetal cardiac intervention to ameliorate critically progressive fetal lesions intensifies the need to address issues about the adequacy of technological assessment and patient selection as well as the morbidity of those who undergo these procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Euro-Collins solution (EC) is routinely used in lung transplantation. The high potassium of EC, however, may damage the vascular endothelium, thereby contributing to postischemic reperfusion injury. To assess the influence of the potassium concentration on lung preservation, we evaluated the effect of a "low potassium Euro-Collins solution" (LPEC), in which the sodium and potassium concentrations were reversed. METHODS: In an extracorporeal rat heart-lung model lungs were preserved with EC and LPEC. The heart-lung blocks (HLB) were perfused with Krebs-Henseleit solution containing washed bovine red blood cells and ventilated with room air. The lungs were perfused via the working right ventricle with deoxygenated perfusate. Oxygenation and pulmonary vascular resistance (PVR) were monitored. After baseline measurements, hearts were arrested with St. Thomas' solution and the lungs were perfused with EC or LPEC, or were not perfused (controls). The HLBs were stored for 5 min or 2 h ischemic time at 4 degrees C. Reperfusion and ventilation was performed for 40 min. At the end of the trial the wet/dry ratio of the lungs was calculated and light microscopic assessment of the degree of edema was performed. RESULTS: After 5 min of ischemia oxygenation was significantly better in both preserved groups compared to the controls. Pulmonary vascular resistance was elevated in all three groups after 30 min reperfusion at both ischemic times. After 2 h of ischemia PVR of the group preserved with LPEC was significantly lower than those of the EC and controls (LPEC-5 min: 184 +/- 65 dynes * sec * cm-5, EC-5 min: 275 +/- 119 dynes * sec * cm * cm-5, LPEC-2 h: 324 +/- 47 dynes * sec * m-5, EC-2 h: 507 +/- 83 dynes * sec * cm-5). Oxygenation after 2 h of ischemia and 30 min reperfusion was significantly better in the LPEC group compared to EC and controls (LPEC: 70 +/- 17 mmHg, EC: 44 +/- 3 mmHg). The wet/dry ratio was significantly lower in the two preserved groups compared to controls (LPEC-5 min: 5.7 +/- 0.7, EC-5 min: 5.8 +/- 1.2, controls-5 min: 7.5 +/- 1.8, LPEC-2 h: 6.7 +/- 0.4, EC: 6.9 +/- 0.4, controls-2 h: 7.3 +/- 0.4). CONCLUSIONS: We thus conclude that LPEC results in better oxygenation and lower PVR in this lung preservation model. A low potassium concentration in lung preservation solutions may help in reducing the incidence of early graft dysfunction following lung transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM To determine the relation between the extent and distribution of left ventricular hypertrophy and the degree of disturbance of regional relaxation and global left ventricular filling. METHODS Regional wall thickness (rWT) was measured in eight myocardial regions in 17 patients with hypertrophic cardiomyopathy, 12 patients with hypertensive heart disease, and 10 age matched normal subjects, and an asymmetry index calculated. Regional relaxation was assessed in these eight regions using regional isovolumetric relaxation time (rIVRT) and early to late peak filling velocity ratio (rE/A) derived from Doppler tissue imaging. Asynchrony of rIVRT was calculated. Doppler left ventricular filling indices were assessed using the isovolumetric relaxation time, the deceleration time of early diastolic filling (E-DT), and the E/A ratio. RESULTS There was a correlation between rWT and both rIVRT and rE/A in the two types of heart disease (hypertrophic cardiomyopathy: r = 0.47, p < 0.0001 for rIVRT; r = -0.20, p < 0.05 for rE/A; hypertensive heart disease: r = 0.21, p < 0.05 for rIVRT; r = -0.30, p = 0.003 for rE/A). The degree of left ventricular asymmetry was related to prolonged E-DT (r = 0. 50, p = 0.001) and increased asynchrony (r = 0.42, p = 0.002) in all patients combined, but not within individual groups. Asynchrony itself was associated with decreased E/A (r = -0.39, p = 0.01) and protracted E-DT (r = 0.69, p < 0.0001) and isovolumetric relaxation time (r = 0.51, p = 0.001) in all patients. These correlations were still significant for E-DT in hypertrophic cardiomyopathy (r = 0.56, p = 0.02) and hypertensive heart disease (r = 0.59, p < 0.05) and for isovolumetric relaxation time in non-obstructive hypertrophic cardiomyopathy (n = 8, r = 0.87, p = 0.005). CONCLUSIONS Non-invasive ultrasonographic examination of the left ventricle shows that in both hypertrophic cardiomyopathy and hypertensive heart disease, the local extent of left ventricular hypertrophy is associated with regional left ventricular relaxation abnormalities. Asymmetrical distribution of left ventricular hypertrophy is indirectly related to global left ventricular early filling abnormalities through regional asynchrony of left ventricular relaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to compare the right (RV) and left (LV) ventricular Tei indices obtained by pulsed-wave Doppler (PD) and tissue Doppler (TD) methods in fetuses with structurally normal and abnormal hearts. METHODS This was a retrospective cross-sectional study of 147 fetuses that had a fetal echocardiogram and Tei index measured during a 2-year period. The RV and LV Tei indices were measured using both PD and TD methods. The difference between the two methods of Tei index measurement was tested using paired sample t-test, Pearson correlation coefficient was used to examine their relationship, and the agreement between the methods was tested using Bland-Altman analysis. RESULTS A total of 87 fetuses had normal hearts and 60 had a congenital heart defect. Both PD and TD Tei indices were measured successfully from at least one ventricle in 123 cases and from both ventricles in 110 cases. The mean TD Tei index was significantly higher than the mean PD Tei index for both ventricles (P < 0.0001). There was a weak but statistically significant correlation between the PD and TD Tei indices of the right ventricle (r = 0.20, P = 0.029), whereas the PD and TD Tei indices of the left ventricle did not correlate significantly (r = 0.04, P = 0.684). When pairs of Tei indices measured by two different methods (123 pairs for the right ventricle and 111 for the left ventricle) were tested with Bland-Altman analysis, the bias and precision were 0.147 and 0.254, respectively, for the right ventricle, and 0.299 and 0.276, respectively, for the left ventricle. CONCLUSIONS Correlation between Tei indices measured by PD and TD methods is weak and the agreement between individual measurements is poor. Therefore, they should not be used interchangeably in the assessment of fetal cardiac function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction The aim of this study was to determine which single measurement on post-mortem cardiac MR reflects actual heart weight as measured at autopsy, assess the intra- and inter-observer reliability of MR measurements, derive a formula to predict heart weight from MR measurements and test the accuracy of the formula to prospectively predict heart weight. Materials and methods 53 human cadavers underwent post-mortem cardiac MR and forensic autopsy. In Phase 1, left ventricular area and wall thickness were measured on short axis and four chamber view images of 29 cases. All measurements were correlated to heart weight at autopsy using linear regression analysis. In Phase 2, single left ventricular area measurements on four chamber view images (LVA_4C) from 24 cases were used to predict heart weight at autopsy based on equations derived during Phase 1. Intra-class correlation coefficient (ICC) was used to determine inter- and intra-reader agreement. Results Heart weight strongly correlates with LVA_4C (r=0.78 M; p<0.001). Intra-reader and inter-reader reliability was excellent for LVA_4C (ICC=0.81–0.91; p<0.001 and ICC=0.90; p<0.001 respectively). A simplified formula for heart weight ([g]≈LVA_4C [mm2]×0.11) was derived based on linear regression analysis. Conclusions This study shows that single circumferential area measurements of the left ventricle in the four chamber view on post-mortem cardiac MR reflect actual heart weight as measured at autopsy. These measurements yield an excellent intra- and inter-reader reliability and can be used to predict heart weight prior to autopsy or to give a reasonable estimate of heart weight in cases where autopsy is not performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS While zebrafish embryos are amenable to in vivo imaging, allowing the study of morphogenetic processes during development, intravital imaging of adults is hampered by their small size and loss of transparency. The use of adult zebrafish as a vertebrate model of cardiac disease and regeneration is increasing at high speed. It is therefore of great importance to establish appropriate and robust methods to measure cardiac function parameters. METHODS AND RESULTS Here we describe the use of 2D-echocardiography to study the fractional volume shortening and segmental wall motion of the ventricle. Our data show that 2D-echocardiography can be used to evaluate cardiac injury and also to study recovery of cardiac function. Interestingly, our results show that while global systolic function recovered following cardiac cryoinjury, ventricular wall motion was only partially restored. CONCLUSION Cryoinjury leads to long-lasting impairment of cardiac contraction, partially mimicking the consequences of myocardial infarction in humans. Functional assessment of heart regeneration by echocardiography allows a deeper understanding of the mechanisms of cardiac regeneration and has the advantage of being easily transferable to other cardiovascular zebrafish disease models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies indicated that the central nervous system induces release of the cardiac hormone atrial natriuretic peptide (ANP) by release of oxytocin from the neurohypophysis. The presence of specific transcripts for the oxytocin receptor was demonstrated in all chambers of the heart by amplification of cDNA by the PCR using specific oligonucleotide primers. Oxytocin receptor mRNA content in the heart is 10 times lower than in the uterus of female rats. Oxytocin receptor transcripts were demonstrated by in situ hybridization in atrial and ventricular sections and confirmed by competitive binding assay using frozen heart sections. Perfusion of female rat hearts for 25 min with Krebs–Henseleit buffer resulted in nearly constant release of ANP. Addition of oxytocin (10−6 M) significantly stimulated ANP release, and an oxytocin receptor antagonist (10−7 and 10−6 M) caused dose-related inhibition of oxytocin-induced ANP release and in the last few minutes of perfusion decreased ANP release below that in control hearts, suggesting that intracardiac oxytocin stimulates ANP release. In contrast, brain natriuretic peptide release was unaltered by oxytocin. During perfusion, heart rate decreased gradually and it was further decreased significantly by oxytocin (10−6 M). This decrease was totally reversed by the oxytocin antagonist (10−6 M) indicating that oxytocin released ANP that directly slowed the heart, probably by release of cyclic GMP. The results indicate that oxytocin receptors mediate the action of oxytocin to release ANP, which slows the heart and reduces its force of contraction to produce a rapid reduction in circulating blood volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here that the rat heart is a site of oxytocin (OT) synthesis and release. Oxytocin was detected in all four chambers of the heart. The highest OT concentration was in the right atrium (2128 ± 114 pg/mg protein), which was 19-fold higher than in rat uterus but 3.3-fold lower than in the hypothalamus. OT concentrations were significantly greater in the right and left atria than in the corresponding ventricles. Furthermore, OT was released into the effluent of isolated, perfused rat heart (34.5 ± 4.7 pg/min) and into the medium of cultured atrial myocytes. Reverse-phase HPLC purification of the heart extracts and heart perfusates revealed a main peak identical with the retention time of synthetic OT. Southern blots of reverse transcription–PCR products from rat heart revealed gene expression of specific OT mRNA. OT immunostaining likewise was found in atrial myocytes and fibroblasts, and the intensity of positive stains from OT receptors paralleled the atrial natriuretic peptide stores. Our findings suggest that heart OT is structurally identical, and therefore derived from, the same gene as the OT that is primarily found in the hypothalamus. Thus, the heart synthesizes and processes a biologically active form of OT. The presence of OT and OT receptor in all of the heart’s chambers suggests an autocrine and/or paracrine role for the peptide. Our finding of abundant OT receptor in atrial myocytes supports our hypothesis that OT, directly and/or via atrial natriuretic peptide release, can regulate the force of cardiac contraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used targeted gene disruption in mice to ablate nonmuscle myosin heavy chain B (NMHC-B), one of the two isoforms of nonmuscle myosin II present in all vertebrate cells. Approximately 65% of the NMHC-B−/− embryos died prior to birth, and those that were born suffered from congestive heart failure and died during the first day. No abnormalities were detected in NMHC-B+/− mice. The absence of NMHC-B resulted in a significant increase in the transverse diameters of the cardiac myocytes from 7.8 ± 1.8 μm (right ventricle) and 7.8 ± 1.3 μm (left ventricle) in NMHC-B+/+ and B+/− mice to 14.7 ± 1.1 μm and 13.8 ± 2.3 μm, respectively, in NMHC-B−/− mice (in both cases, P < 0.001). The increase in size of the cardiac myocytes was seen as early as embryonic day 12.5 (4.5 ± 0.2 μm for NMHC-B+/+ and B+/− vs. 7.2 ± 0.6 μm for NMHC-B−/− mice (P < 0.01)). Six of seven NMHC-B−/− newborn mice analyzed by serial sectioning also showed structural cardiac defects, including a ventricular septal defect, an aortic root that either straddled the defect or originated from the right ventricle, and muscular obstruction to right ventricular outflow. Some of the hearts of NMHC-B−/− mice showed evidence for up-regulation of NMHC-A protein. These studies suggest that nonmuscle myosin II-B is required for normal cardiac myocyte development and that its absence results in structural defects resembling, in part, two common human congenital heart diseases, tetralogy of Fallot and double outlet right ventricle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significantly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage-gated K+ channels are important modulators of the cardiac action potential. However, the correlation of endogenous myocyte currents with K+ channels cloned from human heart is complicated by the possibility that heterotetrameric alpha-subunit combinations and function-altering beta subunits exist in native tissue. Therefore, a variety of subunit interactions may generate cardiac K+ channel diversity. We report here the cloning of a voltage-gated K+ channel beta subunit, hKv beta 3, from adult human left ventricle that shows 84% and 74% amino acid sequence identity with the previously cloned rat Kv beta 1 and Kv beta 2 subunits, respectively. Together these three Kv beta subunits share > 82% identity in the carboxyl-terminal 329 aa and show low identity in the amino-terminal 79 aa. RNA analysis indicated that hKv beta 3 message is 2-fold more abundant in human ventricle than in atrium and is expressed in both healthy and diseased human hearts. Coinjection of hKv beta 3 with a human cardiac delayed rectifier, hKv1.5, in Xenopus oocytes increased inactivation, induced an 18-mV hyperpolarizing shift in the activation curve, and slowed deactivation (tau = 8.0 msec vs. 35.4 msec at -50 mV). hKv beta 3 was localized to human chromosome 3 by using a human/rodent cell hybrid mapping panel. These data confirm the presence of functionally important K+ channel beta subunits in human heart and indicate that beta-subunit composition must be accounted for when comparing cloned channels with endogenous cardiac currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. However, the difficulty in defining myocardial aging and the mechanisms involved complicates the recognition of the cellular processes underlying impaired diastolic relaxation. We raised the possibility that, in a mouse model of physiological aging, defects in the electromechanical properties of cardiomyocytes are important determinants of the diastolic properties of the myocardium, independently from changes in the structural composition of the muscle and collagen framework. Here we show that an increase in the late Na+ current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences the temporal kinetics of Ca2+ cycling and cell shortening. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects the dynamics of Ca2+ transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the etiology of the defective cardiac performance in the elderly.