945 resultados para heart muscle injury
Resumo:
AIMS Skeletal muscle wasting affects 20% of patients with chronic heart failure and has serious implications for their activities of daily living. Assessment of muscle wasting is technically challenging. C-terminal agrin-fragment (CAF), a breakdown product of the synaptically located protein agrin, has shown early promise as biomarker of muscle wasting. We sought to investigate the diagnostic properties of CAF in muscle wasting among patients with heart failure. METHODS AND RESULTS We assessed serum CAF levels in 196 patients who participated in the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Muscle wasting was identified using dual-energy X-ray absorptiometry (DEXA) in 38 patients (19.4%). Patients with muscle wasting demonstrated higher CAF values than those without (125.1 ± 59.5 pmol/L vs. 103.8 ± 42.9 pmol/L, P = 0.01). Using receiver operating characteristics (ROC), we calculated the optimal CAF value to identify patients with muscle wasting as >87.5 pmol/L, which had a sensitivity of 78.9% and a specificity of 43.7%. The area under the ROC curve was 0.63 (95% confidence interval 0.56-0.70). Using simple regression, we found that serum CAF was associated with handgrip (R = - 0.17, P = 0.03) and quadriceps strength (R = - 0.31, P < 0.0001), peak oxygen consumption (R = - 0.5, P < 0.0001), 6-min walk distance (R = - 0.32, P < 0.0001), and gait speed (R = - 0.2, P = 0.001), as well as with parameters of kidney and liver function, iron metabolism and storage. CONCLUSION CAF shows good sensitivity for the detection of skeletal muscle wasting in patients with heart failure. Its assessment may be useful to identify patients who should undergo additional testing, such as detailed body composition analysis. As no other biomarker is currently available, further investigation is warranted.
Resumo:
Obesity and diabetes are metabolic disorders associated with fatty acid availability in excess of the tissues' capacity for fatty acid oxidation. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in skeletal muscle insulin resistance. My dissertation will present work to test the overall hypothesis that "western" and high fat diets differentially affect cardiac and skeletal muscle fatty acid oxidation, the expression of fatty acid responsive genes, and cardiac contractile function. Wistar rats were fed a low fat, "western," or high fat (10%, 45%, or 60% calories from fat, respectively) diet for acute (1 day to 1 week), short (4 to 8 weeks), intermediate (16 to 24 weeks), or long (32 to 48 weeks) term. With high fat diet, cardiac oleate oxidation increased at all time points investigated. In contrast, with western diet cardiac oleate oxidation increased in the acute, short and intermediate term, but not in the long term. Consistent with a maladaptation of fatty acid oxidation, cardiac power (measured ex vivo) decreased with long term western diet only. In contrast to the heart, soleus muscle oleate oxidation increased only in the acute and short term with either western or high fat feeding. Transcript analysis revealed that several fatty acid responsive genes, including pyruvate dehydrogenase kinase 4, uncoupling protein 3, mitochondrial thioesterase 1, and cytosolic thioesterase 1 increased in heart and soleus muscle to a greater extent with high fat diet, versus western diet, feeding. In conclusion, the data implicate inadequate induction of a cassette of fatty acid responsive genes in both the heart and skeletal muscle by western diet resulting in impaired activation of fatty acid oxidation, and the development of cardiac dysfunction. ^
Resumo:
We have used a fluorescence recovery after photobleaching (FRAP) technique to measure radial diffusion of myoglobin and other proteins in single skeletal and cardiac muscle cells. We compare the radial diffusivities, Dr (i.e., diffusion perpendicular to the long fiber axis), with longitudinal ones, Dl (i.e., parallel to the long fiber axis), both measured by the same technique, for myoglobin (17 kDa), lactalbumin (14 kDa), and ovalbumin (45 kDa). At 22°C, Dl for myoglobin is 1.2 × 10−7 cm2/s in soleus fibers and 1.1 × 10−7 cm2/s in cardiomyocytes. Dl for lactalbumin is similar in both cell types. Dr for myoglobin is 1.2 × 10−7 cm2/s in soleus fibers and 1.1 × 10−7 cm2/s in cardiomyocytes and, again, similar for lactalbumin. Dl and Dr for ovalbumin are 0.5 × 10−7 cm2/s. In the case of myoglobin, both Dl and Dr at 37°C are about 80% higher than at 22°C. We conclude that intracellular diffusivity of myoglobin and other proteins (i) is very low in striated muscle cells, ≈1/10 of the value in dilute protein solution, (ii) is not markedly different in longitudinal and radial direction, and (iii) is identical in heart and skeletal muscle. A Krogh cylinder model calculation holding for steady-state tissue oxygenation predicts that, based on these myoglobin diffusivities, myoglobin-facilitated oxygen diffusion contributes 4% to the overall intracellular oxygen transport of maximally exercising skeletal muscle and less than 2% to that of heart under conditions of high work load.
Resumo:
In single isolated skeletal muscle fibers of the frog, we studied (i) the recovery from large sarcolemmal mechanical injuries of the response to electric stimulation and (ii) the integrity of the sarcolemma under the light microscope. In Ringer's solution, the damaged cells stopped contracting and deteriorated completely within 1 hr. In the presence of phosphatidylcholine (0.025 g/ml in Ringer's solution), the injured cells initially responded with local twitches. Within 0.5 hr, contractility and membrane integrity started to recover and both were back to control levels within 3 hr. When these cells were placed back in normal Ringer's solution, they remained viable and active for several hours. Our results suggest that phosphatidylcholine can protect muscle fibers from the effects of sarcolemmal injury.
Resumo:
Hypochlorous acid (HOCl) concentration-dependently decreased ATPase activity and SH groups of pure Ca-ATPase from sarcoplasmic reticulum (SERCA) of rabbit skeletal muscle with IC(50) of 150 micromol/l and 6.6 micromol/l, respectively. This indicates that SH groups were not critical for impairment of Ca-ATPase activity. Pure Ca-ATPase activity was analysed individually with respect to both substrates, Ca(2+) and ATP. Concerning dependence of ATPase activity on HOCl (150 micromol/l) as a function of free Ca(2+) and ATP, V(max) of both dependences decreased significantly, while the affinities to individual substrates were not influenced, with the exception of the regulatory binding site of ATP. On increasing HOCl concentration, fluorescence of fluorescein-5-isothiocyanate (FITC) decreased, indicating binding of HOCl to nucleotide binding site of SERCA. A new fragment appeared at 75 kDa after HOCl oxidation of SR, indicating fragmentation of SERCA. Fragmentation may be associated with protein carbonyl formation. The density of protein carbonyl bands at 75 and 110 kDa increased concentration- and time-dependently. Trolox (250 micromol/l) recovered the Ca-ATPase activity decrease induced by HOCl, probably by changing conformational properties of the Ca-ATPase protein. Trolox inhibited FITC binding to SERCA.
Resumo:
ackground Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.
Resumo:
This study investigated the pathological changes of heart and bulbus artrius of rainbow trout breeders in several group of ages and density. The aim of study was to consider the process and the intensity of the heart and bulbus arteriosus damages in accordance to gender, age and stocking density of trout in three fish culture center (Zarghezel, Niyak in Haraz Region,Mazandaran and Espiran in Tabriz city environs). In field research, the all records the feed and feeding type, rate of mortality, stocking density of spawners and per spawners fishes, water chemical and physical specification was screened. Stocking density was considered as the most important stressor. 10 fish specimens from 7 weight groups (less than 90g, 90 to 300g, 300 to 500 g, 500 to 1000g, 1 to 3 kg, 3 to 5 kg, over 5 kg), totally 210 specimens were sampled and heart and bulbus arteriosus were taken. Samples were fixed in 10 % formalin and transferred to pathology laboratory of veterinary faculty of Tabriz Azad University. Histopathological slides and H&E staining were prepared from these samples. In total, 47 male and 73 female samples showed cardiovascular injury (29 cases in extensive system, 41 cases in semi intensive system, 50 cases in intensive system). The most important was damages, edema and hyperemia in spongy layer of atrium and ventricle muscles, but degeneration the muscle fibers, moderate edema , minor vascular damage. Hemorrhage as the effect of severs vascular damage, thrombus, sever inflammation, sever degeneration in muscle fiber, necrosis and fibrose were further pathological changed. The results of this study showed that the severity of damage increased by increasing the age (weight) of fishes. This situation was seen in all three culturing system (extensive system, semi intensive system, recirculation system). Histopathological changes is obviously seen in samples over 500g, therefore the damages were found to be important (P<0.05). Pathological effects and its severity in recirculation system was significantly high (P<0.05). Comparison with two other culturing system, histopathological changed in heart and bulbus arterius between male and female was significantly different.
Resumo:
Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.
Resumo:
The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.
Resumo:
Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This study examined forearm vasodilatation during mental challenge and exercise in 72 obese children (OC; age = 10 +/- 0.1 years) homozygous with polymorphism in the allele 27 of the beta(2)-adrenoceptors: Gln27 (n = 61) and Glu27 (n = 11). Forearm blood flow was recorded during 3 min of each using the Stroop color-word test (MS) and handgrip isometric exercise. Baseline hemodynamic and vascular measurements were similar. During the MS, peak forearm vascular conductance was significantly greater in group Glu27 (Delta = 0.35 +/- 0.4 vs. 0.12 +/- 0.1 units, respectively, p = .042). Similar results were found during exercise (Delta = 0.64 +/- 0.1 vs. 0.13 +/- 0.1 units, respectively, p = .035). Glu27 OC increased muscle vasodilatory responsiveness upon the MS and exercise.
Resumo:
Context: Patellofemoral pain syndrome (PFPS) is a common knee condition in athletes. Recently, researchers have indicated that factors proximal to the knee, including hip muscle weakness and motor control impairment, contribute to the development of PFPS. However, no investigators have evaluated eccentric hip muscle function in people with PFPS. Objective: To compare the eccentric hip muscle function between females with PFPS and a female control group. Design: Cross-sectional study. Setting: Musculoskeletal laboratory. Patients or Other Participants: Two groups of females were studied: a group with PFPS (n = 10) and a group with no history of lower extremity injury or surgery (n = 10). Intervention(s): Eccentric torque of the hip musculature was evaluated on an isokinetic dynamometer. Main Outcome Measure(s): Eccentric hip abduction, adduction, and external and internal rotation peak torque were measured and expressed as a percentage of body mass (Nm/kg x 100). We also evaluated eccentric hip adduction to abduction and internal to external rotation torque ratios. The peak torque value of 5 maximal eccentric contractions was used for calculation. Two-tailed, independent-samples t tests were used to compare torque results between groups. Results: Participants with PFPS exhibited much lower eccentric hip abduction (t(18) = -2.917, P = .008) and adduction (t(18) = -2.764, P =.009) peak torque values than did their healthy counterparts. No differences in eccentric hip external (t(18) = 0.45, P = .96) or internal (t(18) = -0.742, P =.47) rotation peak torque values were detected between the groups. The eccentric hip adduction to abduction torque ratio was much higher in the PFPS group than in the control group (t(18) = 2.113, P = .04), but we found no difference in the eccentric hip internal to external rotation torque ratios between the 2 groups (t(18) = -0.932, P = .36). Conclusions: Participants with PFPS demonstrated lower eccentric hip abduction and adduction peak torque and higher eccentric adduction to abduction torque ratios when compared with control participants. Thus, clinicians should consider eccentric hip abduction strengthening exercises when developing rehabilitation programs for females with PFPS.