974 resultados para gradient structure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the pseudo-merohedrally twinned crystal of the 1:1 proton-transfer compound of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with 4-aminopyridine: 4-aminopyridinium 3-carboxy-4-hydroxybenzenesulfonate sesquihydrate has been determined at 180 K and the hydrogen-bonding pattern is described. Crystals of the compound are monoclinic with space group P21/c, with unit cell dimensions a = 35.2589(8), b = 7.1948(1), c = 24.5851(5) Å, β = 110.373(2)o, and Z = 16. The monoclinic asymmetric unit comprises four cation-anion pairs and six water molecules of solvation with only the pyridinium cations having pseudo-symmetry as a result of inter-cation aromatic ring π-π stacking effects. Extensive hydrogen bonding gives a three-dimensional framework structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auto rickshaws (3-wheelers) are the most sought after transport among the urban and rural poor in India. The assembly of the vehicle involves assemblies of several major components. The L-angle is the component that connects the front panel with the vehicle floor. Current L-angle part has been observed to experience permanent deformation failure over period of time. This paper studies the effect of the addition of stiffeners on the L-angle to increase the strength of the component. A physical model of the L-angle was reversed engineered and modelled in CAD before static loading analysis were carried out on the model using finite element analysis. The modified L-angle fitted with stiffeners was shown to be able to withstand more load compare to previous design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombinational repair is an essential mechanism for repair of double-strand breaks in DNA. Recombinases of the RecA-fold family play a crucial role in this process, forming filaments that utilize ATP to mediate their interactions with singleand double-stranded DNA. The recombinase molecules present in the archaea (RadA) and eukaryota (Rad51) are more closely related to each other than to their bacterial counterpart (RecA) and, as a result, RadA makes a suitable model for the eukaryotic system. The crystal structure of Sulfolobus solfataricus RadA has been solved to a resolution of 3.2 A° in the absence of nucleotide analogues or DNA, revealing a narrow filamentous assembly with three molecules per helical turn. As observed in other RecA-family recombinases, each RadA molecule in the filament is linked to its neighbour via interactions of a short b-strand with the neighbouring ATPase domain. However, despite apparent flexibility between domains, comparison with other structures indicates conservation of a number of key interactions that introduce rigidity to the system, allowing allosteric control of the filament by interaction with ATP. Additional analysis reveals that the interaction specificity of the five human Rad51 paralogues can be predicted using a simple model based on the RadA structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to halotrichites of the formula MgAl2(SO4)4∙22H2O, MnAl2(SO4)4∙22H2O and ZnAl2(SO4)4∙22H2O. Comparison of the halotrichites in different spectral regions has shown that the incorporation of a divalent transition metal into the halotrichite structure causes a shift in OH stretching band positions to lower wavenumbers. Therefore, an increase in hydrogen bonded water is observed for divalent cations with a larger molecular mass. XRD has confirmed the formation of halotrichite for all three samples and characteristic peaks of halotrichite have been identified at 18.5 and 24.5° 2θ, along with a group of six peaks between 5 and 15° 2θ. It has been observed that Mg-Al and Mn-Al halotrichite are very similar in structure, while Zn-Al showed several differences particularly in the NIR spectra. This work has shown that halotrichite structures can be synthesised and characterised by infrared and NIR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examined the relationship between time structure and Macan's process model of time management. This study proposed that time structure—‘appraisal of effective time usage’—would be a more parsimonious mediator than perceived control over time in the relationship between time management behaviours and outcome variables, such as job satisfaction and psychological well-being. Alternative structure models were compared using a sample of 111 university students. Model 1 tested Macan's process model of time management with perceived control over time as the mediator. Model 2 replaced perceived control over time by the construct of time structure. Model 3 examined the possibility of perceived control over time and time structure as being parallel mediators of the relationships between time management and outcomes. Results of this study showed that Model 1 and Model 2 fitted the data equally well. On the other hand, the mediated effects were small and partial in both models. This pattern of results calls for reassessment of the process model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of variable structure control (VSC) for power systems stabilization is studied in this paper. It is the application, aspects and constraints of VSC which are of particular interest. A variable structure control methodology has been proposed for power systems stabilization. The method is implemented using thyristor controlled series compensators. A three machine power system is stabilized using a switching line control for large disturbances which becomes a sliding control as the disturbance becomes smaller. The results demonstrate the effectiveness of the methodology proposed as an useful tool to suppress the oscillations in power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tear film plays an important role preserving the health of the ocular surface and maintaining the optimal refractive power of the cornea. Moreover dry eye syndrome is one of the most commonly reported eye health problems. This syndrome is caused by abnormalities in the properties of the tear film. Current clinical tools to assess the tear film properties have shown certain limitations. The traditional invasive methods for the assessment of tear film quality, which are used by most clinicians, have been criticized for the lack of reliability and/or repeatability. A range of non-invasive methods of tear assessment have been investigated, but also present limitations. Hence no “gold standard” test is currently available to assess the tear film integrity. Therefore, improving techniques for the assessment of the tear film quality is of clinical significance and the main motivation for the work described in this thesis. In this study the tear film surface quality (TFSQ) changes were investigated by means of high-speed videokeratoscopy (HSV). In this technique, a set of concentric rings formed in an illuminated cone or a bowl is projected on the anterior cornea and their reflection from the ocular surface imaged on a charge-coupled device (CCD). The reflection of the light is produced in the outer most layer of the cornea, the tear film. Hence, when the tear film is smooth the reflected image presents a well structure pattern. In contrast, when the tear film surface presents irregularities, the pattern also becomes irregular due to the light scatter and deviation of the reflected light. The videokeratoscope provides an estimate of the corneal topography associated with each Placido disk image. Topographical estimates, which have been used in the past to quantify tear film changes, may not always be suitable for the evaluation of all the dynamic phases of the tear film. However the Placido disk image itself, which contains the reflected pattern, may be more appropriate to assess the tear film dynamics. A set of novel routines have been purposely developed to quantify the changes of the reflected pattern and to extract a time series estimate of the TFSQ from the video recording. The routine extracts from each frame of the video recording a maximized area of analysis. In this area a metric of the TFSQ is calculated. Initially two metrics based on the Gabor filter and Gaussian gradient-based techniques, were used to quantify the consistency of the pattern’s local orientation as a metric of TFSQ. These metrics have helped to demonstrate the applicability of HSV to assess the tear film, and the influence of contact lens wear on TFSQ. The results suggest that the dynamic-area analysis method of HSV was able to distinguish and quantify the subtle, but systematic degradation of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions. Thus, the HSV method appears to be a useful technique for quantitatively investigating the effects of contact lens wear on the TFSQ. Subsequently a larger clinical study was conducted to perform a comparison between HSV and two other non-invasive techniques, lateral shearing interferometry (LSI) and dynamic wavefront sensing (DWS). Of these non-invasive techniques, the HSV appeared to be the most precise method for measuring TFSQ, by virtue of its lower coefficient of variation. While the LSI appears to be the most sensitive method for analyzing the tear build-up time (TBUT). The capability of each of the non-invasive methods to discriminate dry eye from normal subjects was also investigated. The receiver operating characteristic (ROC) curves were calculated to assess the ability of each method to predict dry eye syndrome. The LSI technique gave the best results under both natural blinking conditions and in suppressed blinking conditions, which was closely followed by HSV. The DWS did not perform as well as LSI or HSV. The main limitation of the HSV technique, which was identified during the former clinical study, was the lack of the sensitivity to quantify the build-up/formation phase of the tear film cycle. For that reason an extra metric based on image transformation and block processing was proposed. In this metric, the area of analysis was transformed from Cartesian to Polar coordinates, converting the concentric circles pattern into a quasi-straight lines image in which a block statistics value was extracted. This metric has shown better sensitivity under low pattern disturbance as well as has improved the performance of the ROC curves. Additionally a theoretical study, based on ray-tracing techniques and topographical models of the tear film, was proposed to fully comprehend the HSV measurement and the instrument’s potential limitations. Of special interested was the assessment of the instrument’s sensitivity under subtle topographic changes. The theoretical simulations have helped to provide some understanding on the tear film dynamics, for instance the model extracted for the build-up phase has helped to provide some insight into the dynamics during this initial phase. Finally some aspects of the mathematical modeling of TFSQ time series have been reported in this thesis. Over the years, different functions have been used to model the time series as well as to extract the key clinical parameters (i.e., timing). Unfortunately those techniques to model the tear film time series do not simultaneously consider the underlying physiological mechanism and the parameter extraction methods. A set of guidelines are proposed to meet both criteria. Special attention was given to a commonly used fit, the polynomial function, and considerations to select the appropriate model order to ensure the true derivative of the signal is accurately represented. The work described in this thesis has shown the potential of using high-speed videokeratoscopy to assess tear film surface quality. A set of novel image and signal processing techniques have been proposed to quantify different aspects of the tear film assessment, analysis and modeling. The dynamic-area HSV has shown good performance in a broad range of conditions (i.e., contact lens, normal and dry eye subjects). As a result, this technique could be a useful clinical tool to assess tear film surface quality in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. A diverse array of patterns has been reported regarding the spatial extent of population genetic structure and effective dispersal in freshwater macroinvertebrates. In river systems, the movements of many taxa can be restricted to varying degrees by the natural stream channel hierarchy. 2. In this study, we sampled populations of the non-biting freshwater midge Echinocladius martini in the Paluma bioregion of tropical northeast Queensland to investigate fine scale patterns of within- and among-stream dispersal and gene flow within a purported historical refuge. We amplified a 639 bp fragment of mitochondrial COI and analysed genetic structure using pairwise ΦST, hierarchical AMOVA, Mantel tests and a parsimony network. Genetic variation was partitioned among stream sections using Streamtree to investigate the effect of potential instream dispersal barriers. 3. The data revealed strong natal site fidelity and significant differentiation among neighbouring, geographically proximate streams. We found evidence for only episodic adult flight among sites on separate stream reaches. Overall, however, our data suggested that both larval and adult dispersal was largely limited to within a stream channel. 4. This may arise from a combination of the high density of riparian vegetation physically restricting dispersal and from the joint effects of habitat stability and large population sizes. Together these may mitigate the requirement for movement among streams to avoid inbreeding and local extinction due to habitat change and may thus enable persistence of upstream populations in the absence of regular compensatory upstream flight. Taken together, these data suggest that dispersal of E. martini is highly restricted, to the scale of only a few kilometres, and hence occurs predominantly within the natal stream.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite many arguments to the contrary, the three-act story structure, as propounded and refined by Hollywood continues to dominate the blockbuster and independent film markets. Recent successes in post-modern cinema could indicate new directions and opportunities for low-budget national cinemas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperthermia and local drug delivery have been proposed the potential therapeutic approaches for bone defects resulting from malignant bone tumors. Development of bioactive materials with magnetic and drug-delivery properties may potentially meet this target. The aim of this study is to develop a multifunctional mesoporous bioactive glass (MBG) scaffold system for both hyperthermia and local-drug delivery application potentially. For this aim, Iron (Fe) containing MBG (Fe-MBG) scaffolds with hierarchically large pores (300-500 µm) and fingerprint-like mesopores (4.5 nm) have been successfully prepared. The effect of Fe on the mesopore structure, physiochemical, magnetism, drug delivery and biological properties of MBG scaffolds has been systematically investigated. The results showed that the morphology of the mesopore varied from straight channels to curved fingerprint-like channels after incorporated parts of Fe into MBG scaffolds. The magnetism magnitude of MBG scaffolds can be tailored by controlling Fe contents. Furthermore, the incorporating of Fe into mesoporous MBG glass scaffolds enhanced the mitochondrial activity and bone-relative gene (ALP and OCN) expression of human bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. The obtained Fe-MBG scaffolds also possessed high specific surface areas and sustained drug delivery. Therefore, Fe-MBG scaffolds are magnetic, degradable and bioactive. The multifunction of Fe-MBG scaffolds indicates that there is a great potential for Fe-MBG scaffolds to be used for the therapy and regeneration of large-bone defects caused by malignant bone tumors through the combination of hyperthermia, local drug delivery and their osteoconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined properties of culture-level personality traits in ratings of targets (N=5,109) ages 12 to 17 in 24 cultures. Aggregate scores were generalizable across gender, age, and relationship groups and showed convergence with culture-level scores from previous studies of self-reports and observer ratings of adults, but they were unrelated to national character stereotypes. Trait profiles also showed cross-study agreement within most cultures, 8 of which had not previously been studied. Multidimensional scaling showed that Western and non-Western cultures clustered along a dimension related to Extraversion. A culture-level factor analysis replicated earlier findings of a broad Extraversion factor but generally resembled the factor structure found in individuals. Continued analysis of aggregate personality scores is warranted.