446 resultados para fos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water intakes in response to hypertonic, hypovolemic, and dehydrational stimuli were investigated in mice lacking angiotensin II as a result of deletion of the angiotensinogen gene (Agt-/- mice), and in C57BL6 wild-type (WT) mice. Baseline daily water intake in Agt-/- mice was approximately threefold that of WT mice because of a renal developmental disorder of the urinary concentrating mechanisms in Agt-/- mice. Intraperitoneal injection of hypertonic saline (0.4 and 0.8 mol/l NaCl) caused a similar dose-dependent increase in water intake in both Agt-/- and WT mice during the hour following injection. As well, Agt-/- mice drank appropriate volumes of water following water deprivation for 7 h. However, Agt-/- mice did not increase water or 0.3 mol/l NaCl intake in the 8 h following administration of a hypovolemic stimulus (30% polyethylene glycol sc), whereas WT mice increased intakes of both solutions during this time. Osmoregulatory regions of the brain [hypothalamic paraventricular and supraoptic nuclei, median preoptic nucleus, organum vasculosum of the lamina terminalis (OVLT), and subfornical organ] showed an increased number of neurons exhibiting Fos-immunoreactivity in response to intraperitoneal hypertonic NaCl in both Agt-/- mice and WT mice. Polyethylene glycol treatment increased Fos-immunoreactivity in the subfornical organ, OVLT, and supraoptic nuclei in WT mice but only increased Fos-immunoreactivity in the supraoptic nucleus in Agt-/- mice. These data show that brain angiotensin is not essential for the adequate functioning of neural pathways mediating osmoregulatory thirst. However, angiotensin II of either peripheral or central origin is probably necessary for thirst and salt appetite that results from hypovolemia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of the sympathetic nervous system through the central actions of the adipokine leptin has been suggested as a major mechanism by which obesity contributes to the development of hypertension. However, direct evidence for elevated sympathetic activity in obesity has been limited to muscle. The present study examined the renal sympathetic nerve activity and cardiovascular effects of a high-fat diet (HFD), as well as the changes in the sensitivity to intracerebroventricular leptin. New Zealand white rabbits fed a 13.5% HFD for 4 weeks showed modest weight gain but a 2- to 3-fold greater accumulation of visceral fat compared with control rabbits. Mean arterial pressure, heart rate, and plasma norepinephrine concentration increased by 8%, 26%, and 87%, respectively (P<0.05), after 3 weeks of HFD. Renal sympathetic nerve activity was 48% higher (P<0.05) in HFD compared with control diet rabbits and was correlated to plasma leptin (r=0.87; P<0.01). Intracerebroventricular leptin administration (5 to 100 μg) increased mean arterial pressure similarly in both groups, but renal sympathetic nerve activity increased more in HFD-fed rabbits. By contrast, intracerebroventricular leptin produced less neurons expressing c-Fos in HFD compared with control rabbits in regions important for appetite and sympathetic actions of leptin (arcuate: −54%, paraventricular: −69%, and dorsomedial hypothalamus: −65%). These results suggest that visceral fat accumulation through consumption of a HFD leads to marked sympathetic activation, which is related to increased responsiveness to central sympathoexcitatory effects of leptin. The paradoxical reduction in hypothalamic neuronal activation by leptin suggests a marked “selective leptin resistance” in these animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We aimed to investigate the relationship between potentially modifiable risk factors in middle age and disability after 13 years using the Framingham Offspring Study (FOS). We further aimed to develop a disability risk algorithm to estimate the risk of future disability for those aged 45-65 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin and cholecystokinin (CCK) play a role in the short-term inhibition of food intake. It is known that peripheral injection of CCK increases c-Fos-immunoreactivity (Fos-IR) in the nucleus of the solitary tract (NTS) in rats, and injection of the serotonin antagonist ondansetron decreases the number of c-Fos-IR cells in the NTS. This supports the idea of serotonin contributing to the effects of CCK. The aim of the present study was to elucidate whether peripherally injected CCK-8S modulates the concentration of serotonin in brain feeding-regulatory nuclei. Ad libitum fed male Sprague-Dawley rats received 5.2 and 8.7 nmol/kg CCK-8S (n = 3/group) or 0.15 M NaCl (n = 3-5/group) injected intraperitoneally (ip). The number of c-Fos-IR neurons, and the fluorescence intensity of serotonin in nerve fibers were assessed in the paraventricular nucleus (PVN), arcuate nucleus (ARC), NTS and dorsal motor nucleus of the vagus (DMV). CCK-8S increased the number of c-Fos-ir neurons in the NTS (mean ± SEM: 72 ± 4, and 112 ± 5 neurons/section, respectively) compared to vehicle-treated rats (7 ± 2 neurons/section, P < 0.05), but did not modulate c-Fos expression in the DMV or ARC. Additionally, CCK-8S dose-dependently increased the number of c-Fos-positive neurons in the PVN (218 ± 15 and 128 ± 14, respectively vs. 19 ± 5, P < 0.05). In the NTS and DMV we observed a decrease of serotonin-immunoreactivity 90 min after injection of CCK-8S (46 ± 2 and 49 ± 8 pixel/section, respectively) compared to vehicle (81 ± 8 pixel/section, P < 0.05). No changes of serotonin-immunoreactivity were observed in the PVN and ARC. Our results suggest that serotonin is involved in the mediation of CCK-8's effects in the brainstem. © 2014 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. This nucleus is a mesencephalic structure of the amphibian brain and is probably homologous to the LC in mammals. There are no data available for the role of LC in the central chemoreception of amphibians. Thus the present study was designed to investigate whether LC of toads (Bufo schneideri) is a CO2/H+ chemoreceptor site. Fos immunoreactivity was used to verify whether the nucleus is activated by hypercarbia (5% CO2 in air). In addition, we assessed the role of noradrenergic LC neurons on respiratory and cardiovascular responses to hypercarbia by using 6-hydroxydopamine lesion. To further explore the role of LC in central chemosensitivity, we examined the effects of microinjection of solutions with different pH values (7.2, 7.4, 7.6, 7.8, and 8.0) into the nucleus. Our main findings were that 1) a marked increase in c-fos-positive cells in the LC was induced after 3 h of breathing a hypercarbic gas mixture; 2) chemical lesions in the LC attenuated the increase of the ventilatory response to hypercarbia but did not affect ventilation under resting conditions; and 3) microinjection with acid solutions (pH = 7.2, 7.4, and 7.6) into the LC elicited an increased ventilation, indicating that the LC of toads participates in the central chemoreception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothalamus plays especially important roles in various endocrine, autonomic, and behavioral responses that guarantee the survival of both the individual and the species. In the rat, a distinct hypothalamic defensive circuit has been defined as critical for integrating predatory threats, raising an important question as to whether this concept could be applied to other prey species. To start addressing this matter, in the present study, we investigated, in another prey species (the mouse), the pattern of hypothalamic Fos immunoreactivity in response to exposure to a predator (a rat, using the Rat Exposure Test). During rat exposure, mice remained concealed in the home chamber for a longer period of time and increased freezing and risk assessment activity. We were able to show that the mouse and the rat present a similar pattern of hypothalamic activation in response to a predator. of particular note, similar to what has been described for the rat, we observed in the mouse that predator exposure induces a striking activation in the elements of the medial hypothalamic defensive system, namely, the anterior hypothalamic nucleus, the dorsomedial part of the ventromedial hypothalamic nucleus and the dorsal premammillary nucleus. Moreover, as described for the rat, predator-exposed mice also presented increased Fos levels in the autonomic and parvicellular parts of the paraventricular hypothalamic nucleus, lateral preoptic area and subfornical region of the lateral hypothalamic area. In conclusion, the present data give further support to the concept that a specific hypothalamic defensive circuit should be preserved across different prey species. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sistemas Integrados de Gestão ou Enterprise Resources Planning - ERP possibilitam o processamento das informações necessárias em uma empresa usando um único banco de dados. Muito tem se escrito sobre este tipo de software, abordando questões como o alto custo da aquisição de licenças, e a dependência de consultoria para a sua adaptação e implantação nas empresas. Atualmente vem crescendo o desenvolvimento e uso de ERP Livre de Código Aberto (FOS-ERP). Porém verifica-se que este tipo de sistema ainda não é suficientemente explorado, mesmo no meio acadêmico. Este artigo relata alguns trabalhos publicados sobre o assunto e levanta questões que devem ser tratadas por pesquisadores e demais interessados para adequar e viabilizar o uso desses sistemas conforme a realidade nacional. Assim, após uma introdução ao tema, são apresentadas algumas diferenças entre o FOS-ERP e seus equivalentes proprietários (Proprietary ERP ou P-ERP) em termos de modelos de negócios, seleção, customização e evolução. em seguida são elencados alguns desafios e oportunidades que o FOS-ERP pode oferecer a usuários, fornecedores, pesquisadores e colaboradores individuais. Concluindo, este artigo busca ampliar a discussão sobre FOS-ERP, destacando fatores tais como seu potencial de inovação tecnológica e estratégias de negócios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immediate-early genes (IEGs) expression has been widely used as a valuable tool to investigate brain areas activated by specific stimuli. Studies of natural vocalizations, specially in songbirds, have largely benefited from this tool. Here we used IEGs expression to investigate brain areas activated by the hearing of conspecific common marmoset (Callithrix jacchus) vocalizations and/or utterance of antiphonal vocalizations. Nine adult male common marmosets were housed in sound-attenuating cages. Six animals were stimulated with playbacks of freely recorded natural long distance vocalizations (phee calls and twitters; 45 min. total duration). Three of them vocalized in response (O/V group) and three did not (O/n group). The control group (C) was composed by the remaining animals, which neither heard the playbacks nor spontaneously vocalized. After one hour of the stimulation onset (or no stimulation, in the case of the C group), animals were perfused with 0,9% phosphate-saline buffer and 4% paraformaldehyde. The tissue was coronally sectioned at 20 micro meter in a cryostat and submitted to immunohistochemistry for the IEGs egr-1 and c-fos. Marked immunoreactivity was observed in the auditory cortex of O/V and O/n subjects and in the anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex of O/V subjects. In this study, brain areas activated by vocalizations of common marmosets were investigated using IEGs expression for the first time. Our results with the egr-1 gene indicate that potential plastic phenomena occur in areas related to hearing and uttering conspecific vocalizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O experimento foi conduzido com 210 leitões desmamados, afim de avaliar os efeitos da adição de frutooligosacarídeos (FOS) ou olaquindox nas rações sobre o desempenho dos 21 aos 63 dias de idade. Utilizou-se programa de alimentação por fases (pré-inicial, inicial-I e inicial-II, de zero aos 16, 17 aos 30 e dos 31 aos 42 dias, respectivamente). O delineamento foi de blocos ao acaso, seis tratamentos e sete repetições de cinco leitões cada: T1 - sem adição de FOS; T2 - com 0,1% de FOS; T3 - com 0,2% de FOS; T4 - com 0,3% de FOS; T5 - com 0,5% de FOS e T6 - sem FOS e 25ppm de olaquindox. A adição de FOS não afetou o consumo e o ganho diário de peso nas diferentes fases estudadas. Contudo, verificou-se melhor desempenho dos leitões que receberam olaquindox comparado à média dos demais tratamentos. Ao contrário do olaquindox, a adição de FOS foi ineficiente em promover melhora no desempenho.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural luteolysis involves multiple pulses of prostaglandin F2alpha (PGF) released by the nonpregnant uterus. This study investigated expression of 18 genes from five distinct pathways, following multiple low-dose pulses of PGF. Cows on Day 9 of the estrous cycle received four intrauterine infusions of 0.25 ml of phosphate-buffered saline (PBS) or PGF (0.5 mg of PGF in 0.25 ml of PBS) at 6-h intervals. A luteal biopsy sample was collected 30 min after each PBS or PGF infusion. There were four treatment groups: Control (n = 5; 4 PBS infusions), 4XPGF (4 PGF infusions; n = 5), 2XPGF-non-regressed (2 PGF infusions; n = 5; PGF-PBS-PGF-PBS; no regression after treatments), and 2XPGF-regressed (PGF-PBS-PGF-PBS; regression after treatments; n = 5). As expected, the first PGF pulse increased mRNA for the immediate early genes JUN, FOS, NR4A1, and EGR1 but unexpectedly also increased mRNA for steroidogenic (STAR) and angiogenic (VEGFA) pathways. The second PGF pulse induced immediate early genes and genes related to immune system activation (IL1B, FAS, FASLG, IL8). However, mRNA for VEGFA and STAR were decreased by the second PGF infusion. After the third and fourth PGF pulses, a distinctly luteolytic pattern of gene expression was evident, with inhibition of steroidogenic and angiogenic pathways, whereas, there was induction of pathways for immune system activation and production of PGF. The pattern of PGF-induced gene expression was similar in corpus luteum not destined for luteolysis (2X-non-regressed) after the first PGF pulse but was very distinct after the second PGF pulse. Thus, although the initial PGF pulse induced mRNA for many pathways, the second and later pulses of PGF appear to have set the distinct pattern of gene expression that result in luteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to investigate a putative role for nitric oxide (NO) in the central nociceptive processing following carrageenan-induced arthritis in the rat temporomandibular joint (TMJ), we analyzed the immunoreactivity, gene expression and activity of nitric oxide synthases (NOS) in the caudal part of the spinal trigeminal nucleus (Sp5C) during the acute (24 h), chronic (15 days) and chronic-active (14 days-24 h) arthritis. In addition, evaluation of head-withdrawal threshold was carried out in all phases of arthritis under chronic inhibition of nNOS with the selective inhibitor 7-nitroindazole (7-NI). Neurons with nNOS-like immunoreactivity (nNOS-LI) were concentrated mainly in the lamina II of the Sp5C, showing no significant statistical difference during arthritis. Only a discrete percentage of nNOS-LI neurons expressed Fos immunoreactivity. The mRNA expression for both nNOS and endothelial nitric oxide synthases (eNOS) presented no noticeable differences among the groups. No expression of inducible nitric oxide synthase (iNOS) was detected in the Sp5C by either immunohistochemistry or reverse-transcription polymerase chain reaction (RTPCR). Ca(2+)-dependent NOS activity in the ipsilateral Sp5C was significantly higher (108.3 +/- 49.2%; P<0.01) in animals during the chronic arthritis. Interestingly, this increased activity was completely abolished 24 h later, in the chronic-active arthritis. Finally, head-withdrawal threshold decreased significantly in the chronic arthritis in animals under 7-NI chronic inhibition. In conclusion, nNOS immunoreactivity and mRNA expression are stable in the Sp5C during TMJ arthritis evolution, but its activity significantly increases in the chronic-phases supporting an antinociceptive role of the nNOS as evidenced by pain threshold experiment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water and NaCl intake is strongly inhibited by the activation of alpha(2)-adrenergic receptors with clonidine or moxonidine (alpha(2)-adrenergic/imidazoline agonists) injected peripherally or into the forebrain and by serotonin and cholecystokinin in the lateral parabrachial nucleus (LPBN). Considering that alpha(2)-adrenergic receptors exist in the LPBN and the similar origin of serotonergic and adrenergic afferent pathways to the LPBN, in this study we investigated the effects of bilateral injections of moxonidine alone or combined with RX 821002 (alpha(2)- adrenergic antagonist) into the LPBN on 1.8% NaCl and water intake induced by the treatment with s.c. furosemide (10 mg/kg)+captopril (5 mg/kg). Additionally, we investigated if moxonidine into the LPBN would modify furosemide+captopril-induced c-fos expression in the forebrain. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were used. Contrary to forebrain injections, bilateral LPBN injections of moxonidine (0.1, 0.5 and 1 nmol/0.2 mul) strongly increased furosemide+captopril-induced 1.8% NaCl intake (16.6 +/- 2.7, 44.5 +/- 3.2 and 44.5 +/- 4.3 ml/2 h, respectively, vs. vehicle: 6.9 +/- 1.5 ml/2 h). Only the high dose of moxonidine increased water intake (23.3 +/- 3.8 ml/2 h, vs. vehicle: 12.1 +/- 2.6 ml/2 h). Prior injections of RX 821002 (10 and 20 nmol/0.2 mu1) abolished the effect of moxonidine (0.5 nmol) on 1.8% NaCl intake. Moxonidine into the LPBN did not modify furosemide+captopril-induced c-fos expression in forebrain areas related to the control of fluid-electrolyte balance. The results show that the activation of LPBN a2-adrenergic receptors enhances furosemide+captopril-induced 1.8% NaCl and water intake. This enhancement was not related to prior alteration in the activity of forebrain areas as suggested by c-fos expression. Previous and present results indicate opposite roles for alpha(2-)adrenergic receptors in the control of sodium and water intake according to their distribution in the rat brain. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adult rats deprived of water for 24-30 h were allowed to rehydrate by ingesting only water for 1-2 h. Rats were then given access to both water and 1.8% NaCl. This procedure induced a sodium appetite defined by the operational criteria of a significant increase in 1.8% NaCl intake (3.8 +/- 0.8 ml/2 h; n = 6). Expression of Fos (as assessed by immunohistochemistry) was increased in the organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), and supraoptic nucleus (SON) after water deprivation. After rehydration with water but before consumption of 1.8% NaCl, Fos expression in the SON disappeared and was partially reduced in the OVLT and MnPO. However, Fos expression did not change in the SFO. Water deprivation also 1) increased plasma renin activity (PRA), osmolality, and plasma Na+; 2) decreased blood volume; and 3) reduced total body Na+; but 4) did not alter arterial blood pressure. Rehydration with water alone caused only plasma osmolality and plasma Na+ concentration to revert to euhydrated levels. The changes in Fos expression and PRA are consistent with a proposed role for ANG II in the control of the sodium appetite produced by water deprivation followed by rehydration with only water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A water deprived animal that ingests only water efficiently corrects its intracellular dehydration, but remains hypovolemic, in negative sodium balance, and with high plasma renin activity and angiotensin II. Therefore, it is not surprising that it also ingests sodium. However, separation between thirst and sodium appetite is necessary to use water deprivation as a method to understand the mechanisms subserving sodium appetite. For this purpose, we may use the water deprivation-partial repletion protocol, or WD-PR. This protocol allows performing a sodium appetite test after the rat has quenched its thirst; thus, the sodium intake during this test cannot be confounded with a response to thirst. This is confirmed by hedonic shift and selective ingestion of sodium solutions in the sodium appetite test that follows a WD-PR. The separation between thirst and sodium appetite induced by water deprivation permits the identification of brain states associated with sodium intake in the appetite test. One of these states relates to the activation of angiotensin II All receptors. Other states relate to cell activity in key areas, e.g. subfornical organ and central amygdala, as revealed by immediate early gene c-Fos immunoreactivity or focal lesions. Angiotensin II apparently sensitizes the brain of the water deprived rat to produce an enhanced sodium intake, as that expressed by spontaneously hypertensive and by young normotensive rat. The enhancement in sodium intake produced by history of water deprivation is perhaps a clue to understand the putative salt addiction in humans.The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. (C) 2010 Published by Elsevier B.V.