956 resultados para flat starts
Resumo:
Tesis (Doctor en Contaduría) UANL, 2012.
Resumo:
Les effets des lésions de la moelle épinière sur la locomotion sont souvent évalués sur un tapis roulant avec une surface plane, ce qui demande peu d’implication active des structures supraspinales. L’objectif du présent travail est d’évaluer si un type d’entraînement nécessitant une plus grande part de contrôle volontaire (c.-à-d. supraspinal) pourrait améliorer la récupération de la marche chez le chat après une hémilésion unilatérale spinale au niveau thoracique (T10). Pour ce faire, pendant 6 semaines les chats ont été entrainés sur un tapis roulant conventionnel ou sur un tapis-échelle roulante, tâche requérant un placement des pattes plus précis. Les paramètres de la marche ont été évalués par cinématique et électromyographie (EMG) avant et une fois par semaine pendant 6 semaines après lésion. Nos résultats comparant la marche sur tapis conventionnel à celle sur échelle roulante montrent des différences dans les excursions angulaires et les couplages entre les membres. On observe aussi des différences dans l’amplitude des EMG notamment une augmentation de la deuxième bouffée du muscle Semitendineux (St) sur l’échelle roulante. Après l’hémilésion spinale cette bouffée disparait du côté de la lésion tandis qu’elle est maintenue du côté intact. Après l’entrainement sur échelle roulante, on observe des changements de trajectoire de la patte et une disparition du pied tombant (foot drag) qui suggèrent une amélioration du contrôle de la musculature distale. Nos résultats montrent que le patron locomoteur observé sur tapis conventionnel est influencé par le type d’entraînement procuré. De plus, certains paramètres de la locomotion suggèrent que l’entraînement sur échelle roulante, qui requiert plus de contrôle supraspinal, favorise une meilleure récupération de la marche après lésion spinale.
Resumo:
Dept.of Marine Biology,Microbiology and Biochemistry,Cochin University of Science and Technology
Resumo:
This PowerPoint file can be used as a template for teaching presentations. This version has a solid blue background and pale grey text on the title slide and all subsequent content slides.
Resumo:
Single crystal X-ray diffraction studies show that the three designed tripeptides Boc-Leu-Aib-m-NA-NO2 (I), Boc-Phe-Aib-m-NA-NO2 (II) and Boc-Pro-Aib-m-ABA-OMe (III) (Aib, -aminoisobutyric acid; m-NA, m-nitroaniline; m-ABA, m-aminobenzoic acid; Boc, t-butyloxycarbonyl) containing aromatic rings in the backbones adopt -turn structures that are self-assembled through intermolecular hydrogen bonds and van der Waals interactions to create layers of -sheets. Solvent-dependent NMR titration and CD studies show that the -turn structures of the peptides also exist in the solution phase. The field emission scanning electron microscopic and transmission electron microscopic images of the peptides in the solid state reveal fibrillar structures of flat morphology that are formed through -sheet mediated self-assembly of the preorganised -turn building blocks.
Resumo:
Flat Phase PID Controllers have the property that the phase of the transfer function round the associated feedback loop is constant or flat around the design frequency, with the aim that the phase margin and overshoot to a step response is unaffected when the gain of the device under control changes. Such designs have been achieved using Bode Integrals and by ensuring the phase is the same at two frequencies. This paper extends the ‘two frequency’ controller and describes a novel three frequency controller. The different design strategies arc compared.
Resumo:
We study the equilibrium morphology of droplets of symmetric AB diblock copolymer on a flat substrate. Using self-consistent field theory (SCFT), we provide the first predictions for the equilibrium droplet shape and its internal structure. When the sustrate affinity for the A component, $\eta_A$, is small, the droplet adopts a nearly spherical shape much like that of simple fluids. Inside the spherical droplet, however, concentric circular lamellar layers stack on top of each other; hence the thickness of the droplet is effectively quantized by a half-integer or integer number of layers. At larger $\eta_A$ and smaller contact angle, the area of the upper-most layer becomes relatively large, resulting in a nearly flat, faceted top surface, followed by a semi-spherical slope. This geometry is remarkably reminiscent of the droplet shapes observed with smetic liquid crystals.
Resumo:
This paper addresses the statistical mechanics of ideal polymer chains next to a hard wall. The principal quantity of interest, from which all monomer densities can be calculated, is the partition function, G N(z) , for a chain of N discrete monomers with one end fixed a distance z from the wall. It is well accepted that in the limit of infinite N , G N(z) satisfies the diffusion equation with the Dirichlet boundary condition, G N(0) = 0 , unless the wall possesses a sufficient attraction, in which case the Robin boundary condition, G N(0) = - x G N ′(0) , applies with a positive coefficient, x . Here we investigate the leading N -1/2 correction, D G N(z) . Prior to the adsorption threshold, D G N(z) is found to involve two distinct parts: a Gaussian correction (for z <~Unknown control sequence '\lesssim' aN 1/2 with a model-dependent amplitude, A , and a proximal-layer correction (for z <~Unknown control sequence '\lesssim' a described by a model-dependent function, B(z).
Resumo:
The interactions between shear-free turbulence in two regions (denoted as + and − on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, ρ+/ρ−, and kinematic viscosities of the fluids, μ+/μ−, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0−, above and below the interface. This study focuses on gas–liquid interfaces so that ρ+/ρ− ≪ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0− is either very large or very small. It is assumed that vertical buoyancy forces across the interface are much larger than internal forces so that the interface is nearly flat, and coupling between turbulence on either side of the interface is determined by viscous stresses. A formal linearized rapid-distortion analysis with viscous effects is developed by extending the previous study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209–235) of shear-free turbulence near rigid plane boundaries. The physical processes accounted for in our model include both the blocking effect of the interface on normal components of the turbulence and the viscous coupling of the horizontal field across thin interfacial viscous boundary layers. The horizontal divergence in the perturbation velocity field in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis shows the following. (i) The blocking effects are similar to those near rigid boundaries on each side of the interface, but through the action of the thin viscous layers above and below the interface, the horizontal and vertical velocity components differ from those near a rigid surface and are correlated or anti-correlated respectively. (ii) Because of the growth of the viscous layers on either side of the interface, the ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the r.m.s. of the homogeneous turbulence far from the interface, does not vary with time. If the turbulence is driven in the lower layer with ρ+/ρ− ≪ 1 and u0+/u0− ≪ 1, then uI/u0− ~ 1 when Re (=u0−L−/ν−) ≫ 1 and R = (ρ−/ρ+)(v−/v+)1/2 ≫ 1. If the turbulence is driven in the upper layer with ρ+/ρ− ≪ 1 and u0+/u0− ≫ 1, then uI/u0+ ~ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater than Lagrangian time scales. When turbulence is generated in the lower layer, and the Reynolds number is high enough, motions in the upper viscous layer are turbulent. The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies dominates their asymptotic structure. When turbulence is generated in the upper layer, and the Reynolds number is less than about 106–107, the fluctuations in the viscous layer do not become turbulent. Nonlinear processes at the interface increase the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of uI/u0+ ~ 1/(1 + R) to (ρ+/ρ−)1/2 ~ 1/30 for air–water interfaces. This estimate agrees with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee (Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643–1665). Because the linear viscous–inertial coupling mechanism is still significant, the eddy motions on either side of the interface have a similar horizontal structure, although their vertical structure differs.