985 resultados para fish diversity
Resumo:
Natural populations of fish species in Lake Victoria Region (LVR) have under gone dramatic changes including severe reduction in sizes, division of original stocks into disjunct subunits, and segregation into several isolated population units either within a single water body or even worse into separate waters. In addition, these changes have been either preceded or precipitated by introductions of non-indigenous species that out competed the native forms and in case of closely related species genetically swamped them through hybridisation. The latter is especially the case in Nabugabo lakes. Such events lead to fragmentation of populations, which results in reduction in genetic diversity due to genetic drift, inbreeding and reduced or lack of gene flow among independent units. Such phenomena make the continued existence of fisheries stocks in the wild precarious, more so in the face of the competition from exotic species. Species introductions coupled with growing exploitation pressure of the fisheries of these lakes have put the native stocks at risk. Nabugabo lakes harbor cichlid species that are unique to these lakes more so species of the cichlid complex. In this paper the ecological status and genetic viability of key Nabugabo lakes fish species is examined and management options are discussed.
Resumo:
Fish introductions have been made from small fish ponds to the largest lakes in Africa. The primary intent of these introductions has been to sustain or increase fish production, although some introductions have been made to develop sport fisheries and to control unwanted organisms. Some of these introductions have fulfilled their objective in the short term, but several of these "successful" introductions have created uncertainties about their long term sustainability. Lates niloticus, Oreochromis niloticus, O. leucostictus, Tilapia melanopleura and T. zilli were introduced into lakes Victoria and Kyoga in 1950s and early 1960s. By the 1980s O. niloticus and O. niloticus dominated the fisheries of these lakes, virtually eliminating a number of endemic fish species. The loss of genetic diversity of the fish in the worlds second largest lake has also been accompanied by a loss of trophic diversity. The transformation of the fish community has, in Lake Victoria coincided with a profound eutrophication (algal blooms, fish kills, hypolimnetic anoxia) which might be related to alterations of the lake's food-web structure. In contrast, the introduction of a planktivore, Limnothrissa miodon into Lake Kivu and the Kariba reservoir has established highly successful fisheries with little documented effect on the pre-existing fish community or trophic ecology of the lakes. The highly endemised species-rich African Great lakes may be particularly sensitive to species introductions and require special consideration and caution when introductions are contemplated because species extinctions, introgressive hybridization and ecosystem alterations may occur following fish introductions.
Resumo:
Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).
Resumo:
Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca2+ response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 A degrees C and changes in intracellular calcium concentration ([Ca2+](i)) following KCl stimulation were measured using Fura-2, at 12 or 22 A degrees C-test. The increase in [Ca2+](i) resulted primarily from extracellular Ca2+ entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca2+ response was observed between 12- and 22 A degrees C-acclimated fish. In particular, a greater increase in [Ca2+](i) at a high level of adrenaline was observed in 22 A degrees C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.
Resumo:
O efeito das grandes barragens na comunidade piscícola vem sendo documentado por numerosos estudos, enquanto o número de trabalhos que incidem sobre o efeito dos obstáculos de pequena dimensão é bastante mais reduzido. A comunidade piscícola foi amostrada e as variáveis ambientais foram caracterizadas em 28 locais divididos por dois cursos de água da Península Ibérica, 14 dos quais localizados imediatamente a montante, jusante e entre cinco pequenos obstáculos na Ribeira de Muge e 14 na Ribeira de Erra, considerada a linha de água de referência. Através de análise estatística multivariada foi possível verificar que variáveis de habitat como a velocidade de corrente e a profundidade, e não as variáveis físico-químicas, foram as principais responsáveis pela discriminação dos vários grupos de locais nas duas ribeiras. A ribeira de referência exibiu um gradiente longitudinal de velocidade de corrente que, contudo, não era suficientemente forte para causar alterações significativas na composição e estrutura dos agrupamentos piscícolas. Através da sucessiva e drástica repetição deste gradiente junto a cada estrutura, a ribeira com obstáculos apresentou diferenças na fauna piscícola entre os três tipos de locais. Os troços lênticos a montante apresentavam uma densidade mais elevada de espécies limnofilicas, omnívoras e exóticas, como o góbio (Gobio lozanoi), que estão bem adaptadas a este tipo de habitat. Os locais de amostragem situados a jusante e entre os obstáculos caracterizavam-se pela dominância de taxa reófilos e invetivo-os (i.e. barbo, Luciobarbus bocagei). As métricas relacionadas com a riqueza específica não apresentaram diferenças entre os três tipos de locais, ao contrário da diversidade que foi mais elevada nos pontos situados entre os obstáculos, afastados da sua influência directa, onde a diversidade de habitats também é mais elevada. Contrariamente aos locais a montante, os troços a jusante e entre os obstáculos apresentaram similaridades, em muitas das características estudadas, com a ribeira de referência, sugerindo que este tipo de estruturas provoca uma alteração mais significativa na comunidade piscícola a montante. Este estudo sugere que os efeitos dos pequenos obstáculos no habitat e na ictiofauna são, em parte, semelhantes aos descritos para as grandes barragens, fornecendo considerações importantes para os esforços de conservação dos ecossistemas ribeirinhos. ABSTRACT; Many studies have assessed the effects of large dams on fishes but few have examined the effects of small obstacles. Fishes were sampled and environmental variables were characterized at 28 sites in two lberian streams, 14 located immediately downstream, upstream and between five small obstacles at River Muge and 14 at River Erra, considered as the reference stream. Multivariate analysis indicated that habitat variables like current velocity and depth, but not physicochemistry, were the main responsible for site groups' discrimination in both streams. The reference stream exhibited a longitudinal gradient of current velocity that, however, wasn't strong enough to cause significant changes in the fish assemblage's composition and structure. By successive and drastically repeating this gradient near each structure, the obstac1es stream presented differences in fish fauna between the three site types. Lentic upstream sites presented higher density of limnophilic, omnivorous and exotic species, like gudgeon Gobio lozanoi, who are well adapted to this type of habitat. Downstream and between obstacles sites were characterized by the dominance of rheophilic and invertivorous taxa, especially barbel Luciobarbus bocagei. Richness metrics did not differ among site types, but diversity was higher in sites located between the obstacles away from its direct influence, where the habitat diversity was higher. Contrarily to upstream sites, downstream and between obstacles sites were similar in many of the studied features to the reference stream, implying that this type of structures cause a higher modification in the upstream fish community. This study suggests that the effects of small obstacles on habitat and fishes are similar, in some extent, to those reported for larger dams, providing important considerations for riverine ecosystem conservation efforts.
Resumo:
Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.
Resumo:
In salmonids, the release of hatchery-reared fish has been shown to cause irreversible genetic impacts on wild populations. However, although responsible practices for producing and releasing genetically diverse, hatchery-reared juveniles have been published widely, they are rarely implemented. Here, we investigated genetic differences between wild and early-generation hatchery-reared populations of the purple sea urchin Paracentrotus lividus (a commercially important species in Europe) to assess whether hatcheries were able to maintain natural levels of genetic diversity. To test the hypothesis that hatchery rearing would cause bottleneck effects (that is, a substantial reduction in genetic diversity and differentiation from wild populations), we compared the levels and patterns of genetic variation between two hatcheries and four nearby wild populations, using samples from both Spain and Ireland. We found that hatchery-reared populations were less diverse and had diverged significantly from the wild populations, with a very small effective population size and a high degree of relatedness between individuals. These results raise a number of concerns about the genetic impacts of their release into wild populations, particularly when such a degree of differentiation can occur in a single generation of hatchery rearing. Consequently, we suggest that caution should be taken when using hatchery-reared individuals to augment fisheries, even for marine species with high dispersal capacity, and we provide some recommendations to improve hatchery rearing and release practices. Our results further highlight the need to consider the genetic risks of releasing hatchery-reared juveniles into the wild during the establishment of restocking, stock enhancement and sea ranching programs.
Resumo:
This study investigated the parasite communities of wild Acestrorhynchus falcatus and Acestrorhynchus falcirostris populations living in sympatry in Brazilian Amazon. In these two hosts, a total of 12 parasite species e 1-9 parasite species were found per fish, and 10 of these species are metazoans. Eight species of parasites were common to both host species and four of them exhibited differences in abundance and/or prevalence. Parasite communities of the hosts were taxonomically similar (83%) and composed of both ectoparasites and endoparasites, and characterized by high prevalence and high abundance of endoparasites and an aggregated dispersion pattern. For A. falcirostris, the dominant parasite was Ichthyophthirius multifiliis, and for A. falcatus, it was Piscinoodinium pillulare. Shannon diversity and Berger-Parker dominance were similar for both hosts, while the parasites species richness and evenness showed differences influenced by the ectoparasites species. These two populations of hosts that inhabited the same geographical area had different sizes, but were exposed to the same infective stages, and acquired qualitatively and quantitatively similar endoparasites community, thus indicating that the amounts and types of prey congeneric that they were eating were similar. Therefore, the overlap in the same occurrence area play an important role in the parasite communities to these phylogenetically related hosts.
Resumo:
Tese de doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
Fish assemblages in seagrass and unvegetated habitats located in shallow intertidal creeks within the saltmarsh area of the Ria Formosa coastal lagoon were sampled with a Riley push net at 3 sites on a monthly basis over a 1 yr period. The objective was to test if both habitats support similar fish assemblages in terms of abundance, diversity, assemblage structure, and size distribution, and to investigate how site and season affect the assemblages. Fish assemblages associated with these habitats were significantly different in terms of diversity, abundance, and assemblage structure. Seagrass supported a larger number of species and greater diversity, while unvegetated habitat supported greater fish numbers but only of a few species. The habitats were dominated by different groups of resident species that were responsible for major differences in fish assemblage structure between habitats. Pomatoschistus microps and young-of-the-year (YOY) Atherina presbyter dominated the unvegetated habitat, while seagrass was dominated by a diverse group of species, in particular syngnathids and small labrids, revealing different habitat preferences. Site and season were determinant factors conditioning the role of habitat in structuring fish assemblages. Distance between habitats, site elevation, and the amount of marsh drained affected fish assemblages in both habitats. Seasonal fluctuations in the presence and abundance of YOY from marine migrant and resident species were responsible for comparable changes in fish assemblage structure in both habitats. Both habitats provide a distinctive nursery area for different species, while common species reveal ontogenic distributional changes between habitats, where smaller fish appear first in unvegetated creeks.
Resumo:
The effects of commercial trawling on the malacological communities (except for the Cephalopoda) were examined, based on a study undertaken between 1996 and 2000 on the continental shelf and slope of southern Portugal. More than 50% of species caught by trawling in southern Portugal were discarded, with molluscs representing about 19%. Forty-four species of molluscs (15 bivalves, 28 gastropods and one polyplacophoran) were identified from the discarded specimens. Crustacean trawlers accounted for 34 molluscs species, and fish trawlers for 24. Twenty species were only caught by the crustacean trawl, compared with 10 species by the fish trawl, and 14 species were common to both trawls. The bivalve Venus nux Gmelin was the most numerous species discarded in the fish trawl, accounting for 42.0% of the total number of individuals, followed by the gastropods Ampulla priamus (Meuschen) (7.8%) and Ranella olearium (L.) (7.3%). In the crustacean trawl, the most numerous species discarded were the bivalve Anadara diluvii (Lamarck) (19.4%), the gastropod Calliostoma granulatum (Born) (15.5%), and the bivalve V. nux (15.1%). The third most discarded species from fish trawls in Algarve waters, the gastropod species R. olearium, is a species listed in Annex II of the Bern Convention. The difficulties of managing the real impact of fisheries on the molluscan populations and in defining a conservation strategy are discussed.
Resumo:
Temporal variation in a temperate cryptobenthic fish assemblage at the Arrabida Marine Park (Portugal) was assessed by visual Surveys during 2002 and 2003. A total of 9596 fish from 11 families and 30 species was recorded. There were no changes in structure or density at the assemblage level between years, whereas diversity changed significantly due to a higher number of abundant species in the second year. A similar seasonal trend was found between years, with a significant overall density increase in autumn. This is partially explained by the arrival of new recruits of some of the most abundant species in the assemblage. Assemblage diversity and structure also changed across seasons. A group of species encompassing Gobius xanthocephalus, Tripterygion delaisi, Parablennius pilicornis, Gobius paganellus, Lepadogaster candollii and Lepadogaster spp. were analysed in detail. The temporal patterns of two of the most abundant species, G. xanthocephalus and T delaisi, mimicked the overall temporal patterns of the assemblage. We suggest that the inter-annual stability in density of this subtidal fish assemblage may be similar to what has been reported for the intertidal and that strong post-settlement processes are probably shaping this assemblage.