869 resultados para fiber properties
Resumo:
Both strain and damage sensing properties on carbon nanofiber cement composites (CNFCC) are reported in the present paper. Strain sensing tests were first made on the material’s elastic range. The applied loading levels have been previously calculated from mechanical strength tests. The effect of several variables on the strain-sensing function was studied, e.g. cement pastes curing age, current density, loading rate or maximum stress applied. All these parameters were discussed using the gage factor as reference. After this first set of elastic experiments, the same specimens were gradually loaded until material’s failure. At the same time both strain and resistivity were measured. The former was controlled using strain gages, and the latter using a multimeter on a four probe setup. The aim of these tests was to prove the sensitivity of these CNF composites to sense their own damage, i.e. check the possibility of fabricating structural damage sensors with CNFCC’s. All samples with different CNF dosages showed good strain-sensing capacities for curing periods of 28 days. Furthermore, a 2%CNF reinforced cement paste has been sensitive to its own structural damage.
Resumo:
The electrical resistivity of carbon fiber reinforced cement composites (CFRCCs) has been widely studied, because of their utility as multifunctional materials. The percolation phenomenon has also been reported and modeled when the electrical behavior of those materials had to be characterized. Amongst the multiple applications of multifunctional cement composites the ability of a CFRCC to act as a strain sensor is attractive. This paper provides experimental data relating self-sensing function and percolation threshold, and studying the effect of fiber aspect ratio on both phenomena. Higher fiber slenderness permitted percolation at lower carbon fiber addition, affected mechanical properties and improved strain-sensing sensitivity of CFRCC, which was also improved if percolation had not been achieved.
Resumo:
Purpose: To evaluate the possible associations between corneal biomechanical parameters, optic disc morphology, and retinal nerve fiber layer (RNFL) thickness in healthy white Spanish children. Methods: This cross-sectional study included 100 myopic children and 99 emmetropic children as a control group, ranging in age from 6 to 17 years. The Ocular Response Analyzer was used to measure corneal hysteresis (CH) and corneal resistance factor. The optic disc morphology and RNFL thickness were assessed using posterior segment optical coherence tomography (Cirrus HD-OCT). The axial length was measured using an IOLMaster, whereas the central corneal thickness was measured by anterior segment optical coherence tomography (Visante OCT). Results: The mean (±SD) age and spherical equivalent were 12.11 (±2.76) years and −3.32 (±2.32) diopters for the myopic group and 11.88 (±2.97) years and +0.34 (±0.41) diopters for the emmetropic group. In a multivariable mixed-model analysis in myopic children, the average RNFL thickness and rim area correlated positively with CH (p = 0.007 and p = 0.001, respectively), whereas the average cup-to-disc area ratio correlated negatively with CH (p = 0.01). We did not observe correlation between RNFL thickness and axial length (p = 0.05). Corneal resistance factor was only positively correlated with the rim area (p = 0.001). The central corneal thickness did not correlate with the optic nerve parameters or with RNFL thickness. These associations were not found in the emmetropic group (p > 0.05 for all). Conclusions: The corneal biomechanics characterized with the Ocular Response Analyzer system are correlated with the optic disc profile and RNFL thickness in myopic children. Low CH values may indicate a reduction in the viscous dampening properties of the cornea and the sclera, especially in myopic children.
Resumo:
Federal Highway Administration, McLean Va.
Resumo:
We have proposed and demonstrated a fiber ring laser with single-polarization output using an intracavity 45°-tilted fiber grating (45°-TFG). The properties of the 45°-TFG have been investigated both theoretically and experimentally. The fiber ring laser incorporating the 45°-TFG has been systematically characterized, showing a significant improvement in the polarization extinction ratio (PER) and achieving a PER of >30 dB. The slope efficiencies of the ring laser with and without the 45°-TFG have been measured. This laser shows a very stable polarized output with a PER variation of less than 2 dB for 5 hours at laboratory conditions. In addition, we also demonstrated the tunability of the laser.
Resumo:
We study the properties of radiation generated in ultralong fiber lasers and find an interesting link between these optical systems and the theory of weak wave turbulence. Experimental observations strongly suggest that turbulentlike weak interactions between the multitude of laser cavity modes are responsible for practical characteristics of ultralong fiber lasers such as spectra of the output radiation.
Resumo:
We have measured the optical phase sensitivity of fiber based on poly(methyl methacrylate) under near-single-mode conditions at 632.8 nm wavelength. The elongation sensitivity is 131±3×105 rad m-1 and the temperature sensitivity is -212±26 rad m-1 K-1. These values are somewhat larger than those for silica fiber and are consistent with the values expected on the basis of the bulk polymer properties.
Resumo:
We study optical wave turbulence using as a particular example recently created ultralong-fiber laser. We show that the sign of the cavity dispersion has a critical impact on the spectral and temporal properties of generated radiation that are directly relevant to the fiber laser performance. For a normal dispersion, we observe an intermediate state with an extremely narrow spectrum condensate, which experiences an instability and a sharp transition to a strongly fluctuating regime with a wide spectrum and increased probability of spontaneous generation of large-amplitude pulses.
Resumo:
Fueled by their high third-order nonlinearity and nonlinear saturable absorption, carbon nanotubes (CNT) are expected to become an integral part of next-generation photonic devices such as all-optical switches and passive mode-locked lasers. However, in order to fulfill this expectation it is necessary to identify a suitable platform that allows the efficient use of the optical properties of CNT. In this paper, we propose and implement a novel device consisting of an optofluidic device filled with a dispersion of CNT. By fabricating a microchannel through the core of a conventional fiber and filling it with a homogeneous solution of CNTs on Dimethylformamide (DMF), a compact, all-fiber saturable absorber is realized. The fabrication of the micro-fluidic channel is a two-step process that involves femtosecond laser micro-fabrication and chemical etching of the laser-modified regions. All-fiber high-energy, passive mode-locked lasing is demonstrated with an output power of 13.5 dBm. The key characteristics of the device are compactness and robustness against optical, mechanical and thermal damage.
Resumo:
This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarise the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices.
Resumo:
We review the state-of-the-art in photonic crystal fiber (PCF) and microstructured polymer optical fiber (mPOF) based mechanical sensing. We first introduce how the unique properties of PCF can benefit Bragg grating based temperature insensitive pressure and transverse load sensing. Then we describe how the latest developments in mPOF Bragg grating technology can enhance optical fiber pressure sensing. Finally we explain how the integration of specialty fiber sensor technology with bio-compatible polymer based micro-technology provides great opportunities for fiber sensors in the field of healthcare.
Resumo:
Long period gratings have been inscribed in standard single mode fibre using a fs laser system, a fusion arc and a UV laser and a comparative study carried out of their thermal behaviour. The fs laser induced gratings can survive temperatures in excess of 800°C, however the inscription process can induce considerable birefringence within the device. Annealing studies have been carried out showing that below 600°C, all three grating types show a blue shift in their room temperature resonance wavelengths following cyclic heating, while above 600°C, the UV and arc induced LPGs exhibit a red shift, with the fs LPG showing an even stronger blue shift. High temperature annealing is also shown to considerably reduce the birefringence induced by the fs inscription process.
Resumo:
A fine control of the microstructured polymer fiber Bragg grating spectrum properties, such as maximum reflected power and 3-dB bandwidth, through acousto-optic modulation is presented. For simulation purposes, the device is modelled as a single structure, comprising a silica horn and a fiber Bragg grating. For similar sized structures a good correlation between the numerical results and the experimental data is obtained, allowing the strain field to be completely characterized along the whole structure. It is also shown that the microstructured polymer fiber Bragg grating requires less effort from the piezoelectric actuator to produce modification in the grating spectrum when compared with a silica fiber Bragg grating. This technique has potential to be applied on tunable optical filters and tunable cavities for photonic applications.
Resumo:
This chapter deals with gratings recorded in polymeric optical fibers (POFs); predominantly those based on poly (methyl methacrylate) (PMMA). We summarize the different mechanical and optical properties of POFs which are relevant to the application of POF Bragg gratings and discuss the existing literature on the subject of the UV photosensitivity of PMMA. The current state of the art in POF grating inscription is presented and we survey some of the emerging applications for these devices. © 2011 Bentham Science Publishers Ltd. All rights reserved.
Resumo:
In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent experimental demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication and particularly in secure communications. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. An error-free distribution of a random key with an average rate of 100 bps between the users is demonstrated and the key is shown to be unrecoverable to an eavesdropper employing either time or frequency domain passive attacks. In traditional communication systems the transmission medium is considered as a given characteristic of the channel, which does not depend on the properties of the transmitter and the receiver. Recent demonstrations of the feasibility of extending the laser cavity over the whole communication link connecting the two parties, forming an ultra-long fiber laser (UFL), have raised groundbreaking possibilities in communication. Here, a 500 km long secure key distribution link based on Raman gain UFL is demonstrated. © 2014 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.