798 resultados para femtosecond laser filament


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel device for the characterisation of static magnetic fields through monitoring wavelength shifts of femtosecond inscribed fibre Bragg grating and micromachined slot, coated with Terfenol-D. The device was sensitive to static magnetic fields and can be used as a vectoral sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ± 0.3mT in transmission and ± 0.7mT in reflection. The use of a femtosecond laser to both inscribe the FBGs and micromachine the slot in a single stage prior to coating the device significantly simplifies the fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental studies and numerical modeling based on a combination of the Bidirectional Beam Propagation Method and Finite Element Modeling that completely describes the wavelength spectra of point by point femtosecond laser inscribed fiber Bragg gratings, showing excellent agreement with experiment. We have investigated the dependence of different spectral parameters such as insertion loss, all dominant cladding and ghost modes and their shape relative to the position of the fiber Bragg grating in the core of the fiber. Our model is validated by comparing model predictions with experimental data and allows for predictive modeling of the gratings. We expand our analysis to more complicated structures, where we introduce symmetry breaking; this highlights the importance of centered gratings and how maintaining symmetry contributes to the overall spectral quality of the inscribed Bragg gratings. Finally, the numerical modeling is applied to superstructure gratings and a comparison with experimental results reveals a capability for dealing with complex grating structures that can be designed with particular wavelength characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the development of femtosecond laser inscribed superstructure fiber gratings (fsSFG) in silica optical fibre. We utilise a single step process, to inscribe low loss and polarisation independent, sampled gratings in optical fibres using the point by point femtosecond laser inscription method. Our approach results in a controlled modulated index change with complete suppression of any overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. We also solve Maxwell's equations and calculate the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis and the estimation of inscription parameters such as ac index modulation, wavelength and the relative peak strength. We also explore how changes in the grating's period influence the reflection spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this letter, we report on the inscription of a fourth-order fiber Bragg grating made line-by-line in the optical fiber using a femtosecond laser. Strong Bragg resonance (~17 dB) and low insertion loss (~0.5 dB) were obtained with only 2000 periods. Measured refractive index change of these inscribed lines reaches up to 7 × 10-3. The grating was fully characterized and the low insertion loss together with low polarization-dependent loss were realized compared to gratings made by the point-by-point method. The high temperature annealing experiment shows the grating can survive up to at least 800°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5×10-3 to 10-2, leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.6 dB/cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB, to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping - the inscription process is controlled multi-photon absorption, void generation and subsequent local refractive index changes. The formation of grating structures in photonics crystal fibre has proven difficult, as the presence of holes within the fibre that allow wave-guidance impair and scatter the femtosecond inscription beam. Here we report on the consistent manufacture of long period gratings in endlessly single mode microstructure fibre and on their characterisation to external perturbations. Long period gratings are currently the subject of considerable research interest due to their potential applications as filters and as sensing devices, responsive to strain, temperature, bending and refractive index. Compared to the more mature fibre Bragg grating sensors, LPGs have more complex spectra, usually with broader spectral features. On the other hand they are intrinsically sensitive to bending and refractive index. Perhaps more importantly, the fibre design and choice of grating period can have a considerable influence over the sensitivity to the various parameters, for example allowing the creation of a bend sensor with minimal temperature cross-sensitivity. This control is not possible with FBG sensors. Here we compare the effects of symmetric and asymmetric femtosecond laser inscription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the demonstration of an all-fiber femtosecond erbium doped fiber laser passively mode-locked using a 45º tilted fiber grating as an in-fiber polarizer in the laser cavity. The laser generates 600 fs pulses with output pulse energies ~1 nJ. Since the 45° tilted grating has a broad polarization response, the laser output has shown a tunabilty in wavelength from 1548 nm to 1562 nm by simply adjusting the polarization controllers in the cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of LPGs with the same period was inscribed by femtosecond laser into photonic crystal fibre with various powers. All suffered post-fabrication spectral evolution at low temperatures, apparently related to inscription power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of high intensity femtosecond laser sources for inscribing fibre gratings has attained significant interest. The principal advantage of high-energy pulses is their ability for grating inscription in any material type without preprocessing or special core doping. In the field of fibre optical sensing LPGs written in photonic crystal fibre have a distinct advantage of low temperature sensitivity over gratings written in conventional fibre and thus minimal temperature cross-sensitivity. Previous studies have indicated that LPGs written by a point-by-point inscription scheme using a low repetition femtosecond laser exhibit post-fabrication evolution leading to temporal instabilities at room temperatures with respect to spectral location, strength and birefringence of the attenuation bands. These spectral instabilities of LPGs are studied in photonic crystal fibres (endlessly single mode microstructure fibre) to moderately high temperatures 100°C to 200°C and their performance compared to fusion-arc fabricated LPG. Initial results suggest that the fusion-arc fabricated LPG demonstrate less spectral instability for a given constant and moderate temperature, and are similar to the results obtained when inscribed in a standard single mode fibre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of LPGs was inscribed in photonic crystal fibre by a low repetition femtosecond laser system. When subjected to bending they were found to be spectrally sensitive to bend orientation and displayed a strong polarisation dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.