927 resultados para feature inspection method
Resumo:
Rotation invariance is important for an iris recognition system since changes of head orientation and binocular vergence may cause eye rotation. The conventional methods of iris recognition cannot achieve true rotation invariance. They only achieve approximate rotation invariance by rotating the feature vector before matching or unwrapping the iris ring at different initial angles. In these methods, the complexity of the method is increased, and when the rotation scale is beyond the certain scope, the error rates of these methods may substantially increase. In order to solve this problem, a new rotation invariant approach for iris feature extraction based on the non-separable wavelet is proposed in this paper. Firstly, a bank of non-separable orthogonal wavelet filters is used to capture characteristics of the iris. Secondly, a method of Markov random fields is used to capture rotation invariant iris feature. Finally, two-class kernel Fisher classifiers are adopted for classification. Experimental results on public iris databases show that the proposed approach has a low error rate and achieves true rotation invariance. © 2010.
Resumo:
In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks.
Resumo:
In the article it is considered preconditions and main principles of creation of virtual laboratories for computer-aided design, as tools for interdisciplinary researches. Virtual laboratory, what are offered, is worth to be used on the stage of the requirements specification or EFT-stage, because it gives the possibility of fast estimating of the project realization, certain characteristics and, as a result, expected benefit of its applications. Using of these technologies already increase automation level of design stages of new devices for different purposes. Proposed computer technology gives possibility to specialists from such scientific fields, as chemistry, biology, biochemistry, physics etc, to check possibility of device creating on the basis of developed sensors. It lets to reduce terms and costs of designing of computer devices and systems on the early stages of designing, for example on the stage of requirements specification or EFT-stage. An important feature of this project is using the advanced multi-dimensional access method for organizing the information base of the Virtual laboratory.
Resumo:
When machining a large-scale aerospace part, the part is normally located and clamped firmly until a set of features are machined. When the part is released, its size and shape may deform beyond the tolerance limits due to stress release. This paper presents the design of a new fixing method and flexible fixtures that would automatically respond to workpiece deformation during machining. Deformation is inspected and monitored on-line, and part location and orientation can be adjusted timely to ensure follow-up operations are carried out under low stress and with respect to the related datum defined in the design models.
Resumo:
A tanulmány a mikroökonómia eszközrendszerét és a hazai gépjárműpiac 2013-as adatait segítségül hívva egy új módszert mutat be az ármeghatározás területén. A kutatás központi kérdése az, hogy hol található az a pont, amikor a fogyasztó elégedett a kínált minőséggel és árral – lehetőleg megfelelő időben – és a vállalat is elégedett a megszerzett profittal. A tanulmányban tehát az ármeghatározás során központi szerepet játszik a minőség és az idő, mint értékteremtő funkció. Az elemzés egyik legfőbb következtetése, hogy a profitmaximumból levezetett optimális ár a minőség és az idő különböző paraméterei mellett meghatározható. A módszer segítségével a vállalatok közgazdasági eszközrendszer segítségével kapnak egy új szemléletet működési paramétereik és egyben versenyprioritásaik (ár, költség, minőségszint, idő) felállításához. _____ The study points to a new method for determining price with the tools of microeconomics and data of the Hungarian car market. The focus of the research is on where to find the point where the consumer is satisfied with the quality and price offered – preferably right time – and the company is satisfied with the profit achieved. In this study, therefore, in setting prices plays a central role the quality and time as a value-added feature. One of the main conclusions of the analysis is that the optimal price can be determined by various parameters of the quality and time. The method of using the economic tools help companies get a new perspective and to set up their optimal operating parameters (price, cost, quality level, time).
Resumo:
Recent advances in airborne Light Detection and Ranging (LIDAR) technology allow rapid and inexpensive measurements of topography over large areas. Airborne LIDAR systems usually return a 3-dimensional cloud of point measurements from reflective objects scanned by the laser beneath the flight path. This technology is becoming a primary method for extracting information of different kinds of geometrical objects, such as high-resolution digital terrain models (DTMs), buildings and trees, etc. In the past decade, LIDAR gets more and more interest from researchers in the field of remote sensing and GIS. Compared to the traditional data sources, such as aerial photography and satellite images, LIDAR measurements are not influenced by sun shadow and relief displacement. However, voluminous data pose a new challenge for automated extraction the geometrical information from LIDAR measurements because many raster image processing techniques cannot be directly applied to irregularly spaced LIDAR points. ^ In this dissertation, a framework is proposed to filter out information about different kinds of geometrical objects, such as terrain and buildings from LIDAR automatically. They are essential to numerous applications such as flood modeling, landslide prediction and hurricane animation. The framework consists of several intuitive algorithms. Firstly, a progressive morphological filter was developed to detect non-ground LIDAR measurements. By gradually increasing the window size and elevation difference threshold of the filter, the measurements of vehicles, vegetation, and buildings are removed, while ground data are preserved. Then, building measurements are identified from no-ground measurements using a region growing algorithm based on the plane-fitting technique. Raw footprints for segmented building measurements are derived by connecting boundary points and are further simplified and adjusted by several proposed operations to remove noise, which is caused by irregularly spaced LIDAR measurements. To reconstruct 3D building models, the raw 2D topology of each building is first extracted and then further adjusted. Since the adjusting operations for simple building models do not work well on 2D topology, 2D snake algorithm is proposed to adjust 2D topology. The 2D snake algorithm consists of newly defined energy functions for topology adjusting and a linear algorithm to find the minimal energy value of 2D snake problems. Data sets from urbanized areas including large institutional, commercial, and small residential buildings were employed to test the proposed framework. The results demonstrated that the proposed framework achieves a very good performance. ^
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.
While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.
For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.
Resumo:
Multi-frequency Eddy Current (EC) inspection with a transmit-receive probe (two horizontally offset coils) is used to monitor the Pressure Tube (PT) to Calandria Tube (CT) gap of CANDU® fuel channels. Accurate gap measurements are crucial to ensure fitness of service; however, variations in probe liftoff, PT electrical resistivity, and PT wall thickness can generate systematic measurement errors. Validated mathematical models of the EC probe are very useful for data interpretation, and may improve the gap measurement under inspection conditions where these parameters vary. As a first step, exact solutions for the electromagnetic response of a transmit-receive coil pair situated above two parallel plates separated by an air gap were developed. This model was validated against experimental data with flat-plate samples. Finite element method models revealed that this geometrical approximation could not accurately match experimental data with real tubes, so analytical solutions for the probe in a double-walled pipe (the CANDU® fuel channel geometry) were generated using the Second-Order Vector Potential (SOVP) formalism. All electromagnetic coupling coefficients arising from the probe, and the layered conductors were determined and substituted into Kirchhoff’s circuit equations for the calculation of the pickup coil signal. The flat-plate model was used as a basis for an Inverse Algorithm (IA) to simultaneously extract the relevant experimental parameters from EC data. The IA was validated over a large range of second layer plate resistivities (1.7 to 174 µΩ∙cm), plate wall thickness (~1 to 4.9 mm), probe liftoff (~2 mm to 8 mm), and plate-to plate gap (~0 mm to 13 mm). The IA achieved a relative error of less than 6% for the extracted FP resistivity and an accuracy of ±0.1 mm for the LO measurement. The IA was able to achieve a plate gap measurement with an accuracy of less than ±0.7 mm error over a ~2.4 mm to 7.5 mm probe liftoff and ±0.3 mm at nominal liftoff (2.42±0.05 mm), providing confidence in the general validity of the algorithm. This demonstrates the potential of using an analytical model to extract variable parameters that may affect the gap measurement accuracy.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
The use of digital image processing techniques is prominent in medical settings for the automatic diagnosis of diseases. Glaucoma is the second leading cause of blindness in the world and it has no cure. Currently, there are treatments to prevent vision loss, but the disease must be detected in the early stages. Thus, the objective of this work is to develop an automatic detection method of Glaucoma in retinal images. The methodology used in the study were: acquisition of image database, Optic Disc segmentation, texture feature extraction in different color models and classification of images in glaucomatous or not. We obtained results of 93% accuracy
Resumo:
Measuring the extent to which a piece of structural timber has distorted at a macroscopic scale is fundamental to assessing its viability as a structural component. From the sawmill to the construction site, as structural timber dries, distortion can render it unsuitable for its intended purposes. This rejection of unusable timber is a considerable source of waste to the timber industry and the wider construction sector. As such, ensuring accurate measurement of distortion is a key step in addressing ineffciencies within timber processing. Currently, the FRITS frame method is the established approach used to gain an understanding of timber surface profile. The method, while reliable, is dependent upon relatively few measurements taken across a limited area of the overall surface, with a great deal of interpolation required. Further, the process is unavoidably slow and cumbersome, the immobile scanning equipment limiting where and when measurements can be taken and constricting the process as a whole. This thesis seeks to introduce LiDAR scanning as a new, alternative approach to distortion feature measurement. In its infancy as a measurement technique within timber research, the practicalities of using LiDAR scanning as a measurement method are herein demonstrated, exploiting many of the advantages the technology has over current approaches. LiDAR scanning creates a much more comprehensive image of a timber surface, generating input data multiple magnitudes larger than that of the FRITS frame. Set-up and scanning time for LiDAR is also much quicker and more flexible than existing methods. With LiDAR scanning the measurement process is freed from many of the constraints of the FRITS frame and can be done in almost any environment. For this thesis, surface scans were carried out on seven Sitka spruce samples of dimensions 48.5x102x3000mm using both the FRITS frame and LiDAR scanner. The samples used presented marked levels of distortion and were relatively free from knots. A computational measurement model was created to extract feature measurements from the raw LiDAR data, enabling an assessment of each piece of timber to be carried out in accordance with existing standards. Assessment of distortion features focused primarily on the measurement of twist due to its strong prevalence in spruce and the considerable concern it generates within the construction industry. Additional measurements of surface inclination and bow were also made with each method to further establish LiDAR's credentials as a viable alternative. Overall, feature measurements as generated by the new LiDAR method compared well with those of the established FRITS method. From these investigations recommendations were made to address inadequacies within existing measurement standards, namely their reliance on generalised and interpretative descriptions of distortion. The potential for further uses of LiDAR scanning within timber researches was also discussed.
Resumo:
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e., IF-TMCA) approach is presented for effective event detection. Specifically, the HCFG algorithm is integrated with the Hierarchical Information Gain Analysis (HIGA) method to generate the Importance Factor (IF) for producing the initial detection results. Then, the TMCA algorithm is proposed to efficiently incorporate temporal semantics for re-ranking and improving the final performance. At last, a sampling-based ensemble learning mechanism is applied to further accommodate the imbalanced datasets. In addition to the multimedia semantic representation and class imbalance problems, lack of organization is another critical issue for multimedia big data analysis. In this framework, an affinity propagation-based summarization method is also proposed to transform the unorganized data into a better structure with clean and well-organized information. The whole framework has been thoroughly evaluated across multiple domains, such as soccer goal event detection and disaster information management.
Resumo:
In the presented thesis work, meshfree method with distance fields is applied to create a novel computational approach which enables inclusion of the realistic geometric models of the microstructure and liberates Finite Element Analysis(FEA) from thedependance on and limitations of meshing of fine microstructural feature such as splats and porosity.Manufacturing processes of ceramics produce materials with complex porosity microstructure.Geometry of pores, their size and location substantially affect macro scale physical properties of the material. Complex structure and geometry of the pores severely limit application of modern Finite Element Analysis methods because they require construction of spatial grids (meshes) that conform to the geometric shape of the structure. As a result, there are virtually no effective tools available for predicting overall mechanical and thermal properties of porous materials based on their microstructure. This thesis is a separate handling and controls of geometric and physical computational models that are seamlessly combined at solution run time. Using the proposedapproach we will determine the effective thermal conductivity tensor of real porous ceramic materials featuring both isotropic and anisotropic thermal properties. This work involved development and implementation of numerical algorithms, data structure, and software.