892 resultados para fault handling
Resumo:
The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, naive female R vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female R vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining R vindemiae attack rates. mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness.
Effects of dietary fat modification on skeletal muscle fatty acid handling in the metabolic syndrome
Resumo:
Objective: In the metabolic syndrome (MetS), increased fat storage in ‘nonadipose’ tissues such as skeletal muscle may be related to insulin resistance (‘lipid overflow’ hypothesis). The objective of this study was to examine the effects of dietary fat modification on the capacity of skeletal muscle to handle dietary and endogenous fatty acids (FAs). Subjects and Methods: In total, 29 men with the MetS were randomly assigned to one of four diets for 12 weeks: a high-fat saturated fat diet (HSFA, n=6), a high-fat monounsaturated fat diet (HMUFA, n=7) and two low-fat high-complex carbohydrate diets supplemented with (LFHCCn−3, n=8) or without (LFHCC, n=8) 1.24 g per day docosahexaenoic and eicosapentaenoic acid. Fasting and postprandial skeletal muscle FA handling was examined by measuring arteriovenous concentration differences across the forearm muscle. [2H2]-palmitate was infused intravenously to label endogenous triacylglycerol (TAG) and free fatty acids in the circulation and subjects received a high-fat mixed meal (2.6 MJ, 61 energy% fat) containing [U-13C]-palmitate to label chylomicron-TAG. Results: Postprandial circulating TAG concentrations were significantly lower after dietary intervention in the LFHCCn−3 group compared to the HSFA group (ΔiAUC −139±67 vs 167±70 μmol l−1 min−1, P=0.009), together with decreased concentrations of [U-13C]-labeled TAG, representing dietary FA. Fasting TAG clearance across forearm muscle was decreased on the HSFA diet, whereas no differences were observed in postprandial forearm muscle FA handling between diets. Conclusion: Chronic manipulation of dietary fat quantity and quality did not affect forearm muscle FA handling in men with the MetS. Postprandial TAG concentrations decreased on the LFHCCn−3 diet, which could be (partly) explained by lower concentration of dietary FA in the circulation.
Resumo:
The work reported in this paper is motivated towards handling single node failures for parallel summation algorithms in computer clusters. An agent based approach is proposed in which a task to be executed is decomposed to sub-tasks and mapped onto agents that traverse computing nodes. The agents intercommunicate across computing nodes to share information during the event of a predicted node failure. Two single node failure scenarios are considered. The Message Passing Interface is employed for implementing the proposed approach. Quantitative results obtained from experiments reveal that the agent based approach can handle failures more efficiently than traditional failure handling approaches.
Resumo:
Processor virtualization for process migration in distributed parallel computing systems has formed a significant component of research on load balancing. In contrast, the potential of processor virtualization for fault tolerance has been addressed minimally. The work reported in this paper is motivated towards extending concepts of processor virtualization towards ‘intelligent cores’ as a means to achieve fault tolerance in distributed parallel computing systems. Intelligent cores are an abstraction of the hardware processing cores, with the incorporation of cognitive capabilities, on which parallel tasks can be executed and migrated. When a processing core executing a task is predicted to fail the task being executed is proactively transferred onto another core. A parallel reduction algorithm incorporating concepts of intelligent cores is implemented on a computer cluster using Adaptive MPI and Charm ++. Preliminary results confirm the feasibility of the approach.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts, but does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely 'Intelligent Agents'. A task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator, and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
Recent research in multi-agent systems incorporate fault tolerance concepts. However, the research does not explore the extension and implementation of such ideas for large scale parallel computing systems. The work reported in this paper investigates a swarm array computing approach, namely ‘Intelligent Agents’. In the approach considered a task to be executed on a parallel computing system is decomposed to sub-tasks and mapped onto agents that traverse an abstracted hardware layer. The agents intercommunicate across processors to share information during the event of a predicted core/processor failure and for successfully completing the task. The agents hence contribute towards fault tolerance and towards building reliable systems. The feasibility of the approach is validated by simulations on an FPGA using a multi-agent simulator and implementation of a parallel reduction algorithm on a computer cluster using the Message Passing Interface.
Resumo:
The authors describe a learning classifier system (LCS) which employs genetic algorithms (GA) for adaptive online diagnosis of power transmission network faults. The system monitors switchgear indications produced by a transmission network, reporting fault diagnoses on any patterns indicative of faulted components. The system evaluates the accuracy of diagnoses via a fault simulator developed by National Grid Co. and adapts to reflect the current network topology by use of genetic algorithms.
Resumo:
To ensure minimum loss of system security and revenue it is essential that faults on underground cable systems be located and repaired rapidly. Currently in the UK, the impulse current method is used to prelocate faults, prior to using acoustic methods to pinpoint the fault location. The impulse current method is heavily dependent on the engineer's knowledge and experience in recognising/interpreting the transient waveforms produced by the fault. The development of a prototype real-time expert system aid for the prelocation of cable faults is described. Results from the prototype demonstrate the feasibility and benefits of the expert system as an aid for the diagnosis and location of faults on underground cable systems.
Resumo:
A statistical technique for fault analysis in industrial printing is reported. The method specifically deals with binary data, for which the results of the production process fall into two categories, rejected or accepted. The method is referred to as logistic regression, and is capable of predicting future fault occurrences by the analysis of current measurements from machine parts sensors. Individual analysis of each type of fault can determine which parts of the plant have a significant influence on the occurrence of such faults; it is also possible to infer which measurable process parameters have no significant influence on the generation of these faults. Information derived from the analysis can be helpful in the operator's interpretation of the current state of the plant. Appropriate actions may then be taken to prevent potential faults from occurring. The algorithm is being implemented as part of an applied self-learning expert system.
Resumo:
The authors discuss an implementation of an object oriented (OO) fault simulator and its use within an adaptive fault diagnostic system. The simulator models the flow of faults around a power network, reporting switchgear indications and protection messages that would be expected in a real fault scenario. The simulator has been used to train an adaptive fault diagnostic system; results and implications are discussed.