999 resultados para exotic plant
Resumo:
OBJECTIVE: To evaluate possible adverse reproductive outcomes in an area adjacent to a petrochemical plant in southern Brazil. METHODS: A review of 17,113 birth records of the main hospital of the municipality of Montenegro, southern Brazil, from 1983 to 1998 was carried out. Three groups of cases were selected: (1) newborns with major congenital malformations; (2) newborns with low birth weight (<2,500 g); and (3) stillborns (>500 g). A control was assigned to each case. Controls were the first newborns weighing > or = 2,500 g without malformations and of case-matching sex. Mother's residence during pregnancy was used as an exposure parameter. Statistical analyses were performed using Chi-square test or Fisher test, odds ratio, 0.05 significance level, and 95% confidence interval. RESULTS: For unadjusted analysis, it was found a correlation between low birth weight and geographical proximity of mother's residence to the petrochemical plant (OR = 1.66; 95% CI = 1.01--2.72) or residence on the way of preferential wind direction (OR = 1.62; 95% CI = 1.03--2.56). When other covariates were added in the conditional logistic regression (maternal smoking habits, chronic disease and age), there was no association. CONCLUSIONS: Despite final results were negative, low birth weight could be a good parameter of environmental contamination and should be closely monitored in the studied area.
Resumo:
In the management of solid waste, pollutants over a wide range are released with different routes of exposure for workers. The potential for synergism among the pollutants raises concerns about potential adverse health effects, and there are still many uncertainties involved in exposure assessment. In this study, conventional (culture-based) and molecular real-time polymerase chain reaction (RTPCR) methodologies were used to assess fungal air contamination in a waste-sorting plant which focused on the presence of three potential pathogenic/toxigenic fungal species: Aspergillus flavus, A. fumigatus, and Stachybotrys chartarum. In addition, microbial volatile organic compounds (MVOC) were measured by photoionization detection. For all analysis, samplings were performed at five different workstations inside the facilities and also outdoors as a reference. Penicillium sp. were the most common species found at all plant locations. Pathogenic/toxigenic species (A. fumigatus and S. chartarum) were detected at two different workstations by RTPCR but not by culture-based techniques. MVOC concentration indoors ranged between 0 and 8.9 ppm (average 5.3 ± 3.16 ppm). Our results illustrated the advantage of combining both conventional and molecular methodologies in fungal exposure assessment. Together with MVOC analyses in indoor air, data obtained allow for a more precise evaluation of potential health risks associated with bioaerosol exposure. Consequently, with this knowledge, strategies may be developed for effective protection of the workers.
Resumo:
This work addresses the treatment by nanofiltration (NF) of solutions containing NaCN and NH(4)Cl at various pH values. The NF experiments are carried out in a Lab-Unit equipped with NF-270 membranes for model solutions that are surrogates of industrial ammoniacal wastewaters generated in the coke-making processes. The applied pressure is 30 bar. The main objective is the separation of the compounds NaCN and NH(4)Cl and the optimization of this separation as a function of the pH. Membrane performance is highly dependent on solution composition and characteristics, namely on the pH. In fact, the rejection coefficients for the binary model solution containing sodium cyanide are always higher than the rejections coefficients for the ammonium chloride model solution. For ternary solutions (cyanide/ammonium/water) it was observed that for pH values lower than 9 the rejection coefficients to ammonium are well above the ones observed for the cyanides, but for pH values higher than 9.5 there is a drastic decrease in the ammonium rejection coefficients with the increase of the pH. These results take into account the changes that occur in solution, namely, the solute species that are predominant, with the increase of the pH. The fluxes of the model solutions decreased with increased pH. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper starts with the analysis of the unusual inherence mechanism, from two aspects: accumulating and human error. We put forward twelve factors affected the decision of the emergency treatment plan in practice and summarized the evaluation index system combining with literature data. Then we screened out eighteen representative indicators by used the FDM expert questionnaire in the first phase. Hereafter, we calculated the weight of evaluation index and sorted them by the FAHP expert questionnaire, and came up with the frame of the evaluation rule by combined with the experience. In the end, the evaluation principles are concluded.
Resumo:
A growth trial with Senegalese Sole (Solea senegalensis Kaup, 1858) juveniles fed with diets containing increasing replacement levels of fishmeal by mixtures of plant protein sources was conducted over 12 weeks. Total fat contents of muscle, liver, viscera, skin, fins and head tissues were determined, as well as fatty acid profiles of muscle and liver (GC-FID analysis). Liver was the preferential local for fat deposition (5.5–10.8% of fat) followed by fins (3.4–6.7% fat). Increasing levels of plant protein in the diets seems to be related to increased levels of total lipids in the liver. Sole muscle is lean (2.4–4.0% fat), with total lipids being similar among treatments. Liver fatty acid profile varied significantly among treatments. Plant protein diets induced increased levels of C16:1 and C18:2 n -6 and a decrease in ARA and EPA levels. Muscle fatty acid profile also evidenced increasing levels of C18:2 n 6, while ARA and DHA remained similar among treatments. Substitution of fishmeal by plant protein is hence possible without major differences on the lipid content and fatty acid profile of the main edible portion of the fish – the muscle.
Resumo:
Some previous studies have suggested that some of the volatile organic compounds (VOCs) found in composting plants may have a toxic effect that can influence, besides surroundings populations, workers from the composting plants. Impact of waste management to the environment and workers is already recognised as an environment and occupational health concerns. Several studies regarding the VOCs and bioaerosols emissions from composting have been conducted all over Europe and also in Asia. However, in Portugal the studies developed are scarce and normally VOCs are not studied and recognized as a risk factor present in this occupational setting. Consudering this, a study was developed in a Portuguese composting plant aiming to clarify if there was VOCs presence in the workplaces.
Resumo:
Fungal contamination in composting facilities has been associated with increased respiratory and skin pathologies among compost workers. In this study we aim to characterize the fungal contamination caused by Aspergillus genera within a totally indoor composting plant located in Portugal. Air samples of 50L were collected from 6 sampling sites through an impaction method. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. Pre-treatment and waste screw were the sampling sites of the analyzed composting plant with the highest Aspergillus load in the air. Globally, the genus Aspergillus presented the highest prevalence both in the air from (90.6%), and surfaces from the same sampling sites (60.8%). The results obtained in this study claim the attention to the need of further research regarding the fungal contamination dur to Aspergillus genus in composting plants.
Resumo:
The handling of waste can be responsible for occupational exposure to particles and fungi. The aim of this study was to characterize exposure to particles and fungi in a composting plant. Measurements of particulate matter were performed using portable direct-reading equipment. Air samples of 50L were collected through an impaction method with a flow rate of 140L/min onto malt extract agar supplemented with chloramphenicol (0.05%). Surfaces samples were also collected. All the samples were incubated at 27ºC for 5 to 7 days. Particulate matter data showed higher contamination for PM, and PM10 sizes. Aspergillus genus presents the highest air prevalence (90.6%). Aspergillus niger (32.6%), A. fumigatus (26.5%) and A. flavus (16.3%) were the most prevalent fungi in air sampling, and Mucor sp. (39.2%), Aspergillus niger (30.9%) and A. fumigatus (28.7%) were the most found in surfaces. the results obtained claim the attention to the need of further research.
Resumo:
The handling of waste and compost that occurs frequently in composting plants (compost turning, shredding, and screening) has been shown to be responsible for the release of dust and air borne microorganisms and their compounds in the air. Thermophilic fungi, such as A. fumigatus, have been reported and this kind of contamination in composting facilities has been associated with increased respiratory symptoms among compost workers. This study intended to characterize fungal contamination in a totally indoor composting plant located in Portugal. Besides conventional methods, molecular biology was also applied to overcome eventual limitations.
Resumo:
We show that suspended nano and microfibres electrospun from liquid crystalline cellulosic solutions will curl into spirals if they are supported at just one end, or, if they are supported at both ends, will twist into a helix of one handedness over half of its length and of the opposite handedness over the other half, the two halves being connected by a short straight section. This latter phenomenon, known as perversion, is a consequence of the intrinsic curvature of the fibres and of a topological conservation law. Furthermore, agreement between theory and experiment can only be achieved if account is taken of the intrinsic torsion of the fibres. Precisely the same behaviour is known to be exhibited by the tendrils of climbing plants such as Passiflora edulis, albeit on a lengthscale of millimetres, i.e., three to four orders of magnitude larger than in our fibres. This suggests that the same basic, coarse-grained physical model is applicable across a range of lengthscales.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Química
Resumo:
Mem. Acad. Ciências Lisboa, Classe Ciências, XXXVII: 25-47
Resumo:
In this study the inhalation doses and respective risk are calculated for the population living within a 20 km radius of a coal-fired power plant. The dispersion and deposition of natural radionuclides were simulated by a Gaussian dispersion model estimating the ground level activity concentration. The annual effective dose and total risk were 0.03205 mSv/y and 1.25 x 10-8, respectively. The effective dose is lower than the limit established by the ICRP and the risk is lower than the limit proposed by the U.S. EPA, which means that the considered exposure does not pose any risk for the public health.
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.