930 resultados para excess sludge
Resumo:
A greenhouse study was conducted to determine the number of microbial populations and activities in sewage sludge and phosphate fertilizer-amended dark red latosoil for cultivation of tomato plants. Sewage sludge was applied at doses of 0, 10, 20, 40, 80 and 160 t ha(-1), and phosphate (P2O5) at doses of 0, 100, 200, 400 and 800 kg ha(-1). The bacterial populations increased as a function of sewage sludge and phosphate application. Fungal populations were not affected by the application of phosphate alone but were increased by the application of sewage sludge. Phosphate doses higher than 100-200 kg ha(-1) in combination with sewage sludge inhibited both bacterial and fungal growth. The responses determined by microbial counts were reflected in the microbial biomass values, with a more significant effect of sewage sludge than of phosphate or of a combination of both. These results confirm the need for a carbon and energy source (represented here by sewage sludge) for microbial growth in a soil poor in organic matter. Dehydrogenase and urease activities reflected the results of the microbial populations due to the effect of sewage sludge and phosphate, but no satisfactory result was obtained for phosphatase. Urease activity was expressed by a linear regression equation as the result of the effect of sewage sludge, and by a quadratic regression equation as the result of the effect of phosphate. All parameters investigated showed a significant correlation with bacterial counts but not with fungal counts, indicating a greater effect of sewage sludge and phosphate on bacteria than on fungi.
Resumo:
The partitioning of Mn, Al, Zn, Cu and Ti ions in municipal sewage sludge was investigated before and after bioleaching processes effectuated by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Oxidation reduction potential increase and pH decrease were obtained as a result of bacterial activity. A less pronounced and constant decrease was obtained with A. ferrooxidans, whereas A. thiooxidans presented a lag phase before a steep pH decrease. Metal solubilization was accomplished in experimental systems supplemented with energy source, Fe2+ for A. ferrooxidans and S-0 for A. thiooxidans. Solubilization efficiency differed for each metal except for Al, and was relatively similar for either organism. Metal partitioning was conducted using five-step sequential extraction procedure before and after the bioleaching. The results indicated that Zn and Mn ions were mostly associated with the organic fraction, whereas Cu, Al and Ti ions with the sulphide/ residue fraction. The bioleaching process caused prompt solubilization of metals mostly associated with the more labile fractions (exchangeable, adsorbed and organically bound metals), whereas those associated to the less labile ones (EDTA and sulphide/residue fractions) were exchanged towards more labile fractions.
Resumo:
The effects of anaerobic digestion and initial pH on the bioleaching of metals from sewage sludge were investigated in shake flask experiments. A strain of Acidithiobacillus thiooxidans was employed in the assays using secondary and anaerobic sludges, which resulted in similar solubilization yields of the metals chromium, copper, lead, nickel, and zinc for both the sludges investigated. The effect of initial pH (7.0 and 4.0) on metal bioleaching was assayed by using the anaerobic sludge inoculated with indigenous sulfur-oxidizing thiobacilli. Although the time required to reach the end of the experiment (final pH close to 1.0) was shortened at initial pH of 4.0, final metal solubilization was not significantly different for both initial pH values, resulting in higher solubilization yields for copper, nickel, and zinc (higher than 80%). Chromium and lead presented solubilization yields close to 50%. The results obtained in this work showed that the metal bioleaching process can be applied to sewage sludge regardless of the type of sludge and without the requirement of pH adjustment.
Resumo:
The chemical fractionation and bioleaching of Mn, At, Zn, Cu and Ti in municipal sewage sludge were investigated using Thiobacillus ferrooxidans as leaching microorganism. As a result of the bacterial activity, ORP increase and pH reduction were observed. Metal solubilization was accomplished only in experimental systems supplemented with energy source (Fe(II)). The solubilization efficiency approached similar to80% for Mn and Zn, 24% for Cu, 10% for At and 0.2% for Ti. The chemical fractionation of Mn, At, Zn, Cu and Ti was investigated using a five-step sequential extraction procedure employing KNO3. KF, Na4P2O7, EDTA and HNO3. The results show that the bioleaching process affected the partitioning of Mn and Zn, increasing its percentage of elution in the KNO3 fraction while reducing it in the KF, Na4P2O7 and EDTA fractions. No significant effect was detected on the partitioning of Cu and Al. However, quantitatively the metals Mn, Zn, Cu and At were extracted with higher efficiency after the bacterial activity. Titanium was unaffected by the bioleaching process in both qualitative and quantitative aspects. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
objective: To analyze bioelectrical impedance performance in detecting the presence of excess visceral fat and overweight/obesity in young Brazilians and how its values are related with them.Methods: Study sample consisted of 811 adolescents of both genders (11 to 17 years of age). Nutritional status was determined based on triceps skinfold thickness (TSF), relative body fat (bioelectrical impedance), and excess visceral fat as determined by waist circumference. Statistical analysis was performed using means, standard deviations, linear correlation, Student's t test, and ROC curve.Results: Bioelectrical impedance achieved good performance in identifying excess visceral fat associated with overweight/obesity in both genders, and was found to be more specific (male 92.4% and female 93.8%) than sensitive (male 86.1% and female 71.8%).Conclusion: Our findings support the use of bioelectrical impedance to identify the presence of excess visceral and subcutaneous fat in adolescents.
Resumo:
In this study, the effect of bismuth content on the crystal structure, morphology and electric properties of barium-bismuth-tantalate (BBT) ceramics was explored with the aid of X-ray diffraction (XRD), scanning electron microcopy (SEM), dielectric properties and ferroelectric hysteresis loops. BaBi2Ta2O9 (BBT) ceramics have been successfully prepared by the solid-state reaction. The BBT phase was crystallized at 900 degreesC for 2 h. The excess of bismuth controls the grain size, affecting the density of the material. Measurements of dieletric constant and dieletric losses confirm that the material is a ferroeletric with a Curie temperature around 77 degreesC. The dieletric constant measured at room temperature was 400, with a dielectric loss of 0.03. Both the phase-transition behaviour and ferroelectric properties, such as spontaneous polarization (P-s), showed a dependence on Bi content. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a fast procedure for scanning electron microscopy (SEM) analysis in which hexamethyldisilazane (HMDS) solvent, instead of the critical point drying, is used to remove liquids from a microbiological specimen. The results indicate that the HMDS solvent is suitable for drying samples of anaerobic cells for examination by SEM and does not cause cell structure disruption.
Resumo:
The effects of municipal sewage sludge solids concentration, leaching microorganisms (Thiobacillus thiooxidans or Thiobacillus ferrooxidans) and the addition of energy source (SO or Fe(II)) on the bioleaching of metals from sewage sludge has been investigated under laboratory conditions using shake flasks. The results show that metal solubilization was better accomplished if additional energy source is supplemented to the microorganisms and that T. thiooxidans furnishes, in general, more adequate conditions for the bioleaching than T. ferrooxidans. At a total solids concentration of 70 g L-1 (originally present in the sludge) pH drop and ORP increase are attenuated, so metal solubilization is negatively affected. Tt was also demonstrated that if lead (Pb) solubilization is to be achieved, than a special combination of microorganism/energy source must be applied.
Resumo:
This paper evaluates the efficiency of geotextile filters for sludge from a compact water treatment plant (WTP). The key aspects required in the methodology of selection and designing geotextile filters for sludge from dewatering was investigated based on laboratory tests results. The analyses were supported by the measured filtrated volume of water and turbidity resulting from variable head permeability tests carried out in two geotextiles and using the conventional granular filter (sand and gravel). The results of the present study showed that more than 75% of the dewatering sludge can be filtrated with low turbidity, which permits that this water can return to the treatment plan in order to be reuse in another cycle. The reduced volume of sludge retained by the geotextile that is transferred to the drying pound increases its efficiency by reducing the drying time. The low volume of the dry waste can be removed and the geotextile can be easily cleaned or replaced when needed. These procedures significantly reduce the volume of water needed in dewatering and also avoids waste discharges in the environment.
Resumo:
The effect of lead excess on the pyrochlore-type formation in Pb(Mg1/3Nb2/3)O-3 (PMN) powders has been investigated. The polymeric precursor method was used in the synthesis of the columbite in association to the partial oxalate method to synthesize the PMN powder samples. Structure refinement of the columbite precursor and PMN powders was carried out using the Rietveld method. The quantitative phase analysis showed that the amount of perovskite phase is not affected by PbO excess, but a great excess drives the pyrochlore-type formation so that 3 wt.% of PbO causes the predominance of Mg-containing pyrochlore phase. Using the refined data obtained from the Rietveld refinement, the compositional fluctuation in the perovskite phase was calculated from Nb/Mg ratio values and Pb occupation factor. Mg inclusion occurs concomitant with Ph one into PMN perovskite phase and this effect is directed by PbO excess during powder synthesis. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The effect of copper and zinc ions on sulphur oxidation by Acidithiobacillus thiooxidans, strain SFR01, isolated from anaerobic sewage sludge was assessed, resulting in tolerance levels up to 20 and 200 mmol l(-1) for copper and zinc, respectively. The tolerance levels obtained were higher than the concentration of copper and zinc usually found in the collected sewage sludge. The tolerance levels obtained indicate no constraints for sludge bioleaching of those metals due to their toxicities to the indigenous A. thiooxidans.
Resumo:
The evolution of As excess in As-rich Ga1-xAsx films is analyzed for distinct As concentrations and different annealing temperatures. Initially the samples are amorphous and crystallize partially after thermal annealing. The formation of both amorphous and crystalline As clusters is examined by micro-Raman and X-ray diffraction analysis. When highly and moderately unbalanced materials are compared, differences are clearly observed concerning the crystallization temperature and the migration kinetics of the As excess. These differences are explained by the fort-nation of As precipitates around the GaAs crystallites in the moderately unbalanced material, contrasting with the migration of the As excess to the film surface in the highly unbalanced material.
Resumo:
Two patterns of solubilization of metal ions resulting from bioleaching of sewage sludge by sulphur-oxidizing Thiobacillus spp. were established as a function of pH. Chromium and copper ions required a pH of 2-3 to initiate their solubilization, whereas nickel and zinc ions had their solubilization initiated at pH 6-6.5. The patterns obtained were independent of the sludge solids concentrations investigated (10, 17, 25, 32.5 and 40 g l(-1)).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although research on the environmental impacts of using waste as a fertilizer is of great importance, the basic principle for using a product as fertilizer is that it should provide nutrients for plants without causing any harm to them. The objective of this study was to evaluate the agronomic traits (number of nodes, plant height, leaf number, yield, and protein content of grains) and the nutritional status of corn treated with sewage sludge. The experiment was conducted in the municipality of Jaboticabal in a Red Latosol. A randomized block design with four treatments (0, 55, 110, and 167.5 Mg ha(-1) of sewage sludge) and five repetitions was used. At 30 days after emergence (DAE), the dose of 110 Mg ha(-1) dry weight presented greater values for plant height, leaf number and stem diameter. At 60 DAE, the treatments did not affect the agronomic traits. No influence from the treatments tested was observed for protein content of grains and yield. The dose of 167.5 Mg ha(-1) showed greater weight of 100 seeds. All treatments showed nutritional imbalances. This study confirmed the agricultural potential of sewage sludge as a source of nutrients.