898 resultados para esophagus stenosis
Resumo:
Introduction: Caustic ingestion (CI) in children and adolescents may lead to esophageal burns, esophageal stenosis and secondary dysphagia. These complications may limit the normal feeding process leading to malnutrition and growth impairment. Aims: Our aim was to evaluate the nutritional status and its association with dysphagia and esophageal stenosis in children with CI. Methods: Sixty-two patients with caustic ingestion treated at a pediatric referral hospital were included in this cross-sectional study. Independent variables were dysphagia/normal swallowing and esophageal stenosis/normal barium-swallow. The dependent variables were growth and nutritional status evaluated by anthropometry. Analysis: χ² test, OR, 95% CI, kappa test and Student's t-test. Results: The average age at the time of CI was 39.7 months; 38.7% of the patients were girls. Endoscopy performed upon admission revealed erosive esophagitis (II-b, III-a, and III-b) in 46 (77.8%) of the patients, dysphagia in twenty-four (38.7%) and esophageal stenosis in forty (64.5%). Both complications occurred simultaneously in 20 children (32.3%, kappa = 0.3, p = 0.014). The z-score of height-for-age was below -2 SD in five children (8.1%). The z score of body mass index (BMI) was < -2 SD in three children (4.8%) and it was above +1 SD in 24.2%. The z-score means of the arm anthropometric indicators of fat stores and muscle mass in both the dysphagia and esophageal stenosis groups were located in the negative area of the z-score curve and their values differed significantly from the z-scores of the non-dysphagia and non-stenosis groups. Conclusions: The proportion of erosive esophagitis, esophageal stenosis and dysphagia was high. Children with dysphagia and/or esophageal stenosis associated with CI had lower fat stores and muscle mass than the cases without esophageal complications.
Resumo:
The factors that influence decision making in severe aortic stenosis (AS) are unknown. Our aim was to assess, in patients with severe AS, the determinants of management and prognosis in a multicenter registry that enrolled all consecutive adults with severe AS during a 1-month period. One-year follow-up was obtained in all patients and included vital status and aortic valve intervention (aortic valve replacement [AVR] and transcatheter aortic valve implantation [TAVI]). A total of 726 patients were included, mean age was 77.3 ± 10.6 years, and 377 were women (51.8%). The most common management was conservative therapy in 468 (64.5%) followed by AVR in 199 (27.4%) and TAVI in 59 (8.1%). The strongest association with aortic valve intervention was patient management in a tertiary hospital with cardiac surgery (odds ratio 2.7, 95% confidence interval 1.8 to 4.1, p <0.001). The 2 main reasons to choose conservative management were the absence of significant symptoms (136% to 29.1%) and the presence of co-morbidity (128% to 27.4%). During 1-year follow-up, 132 patients died (18.2%). The main causes of death were heart failure (60% to 45.5%) and noncardiac diseases (46% to 34.9%). One-year survival for patients treated conservatively, with TAVI, and with AVR was 76.3%, 94.9%, and 92.5%, respectively, p <0.001. One-year survival of patients treated conservatively in the absence of significant symptoms was 97.1%. In conclusion, most patients with severe AS are treated conservatively. The outcome in asymptomatic patients managed conservatively was acceptable. Management in tertiary hospitals is associated with valve intervention. One-year survival was similar with both interventional strategies.
Resumo:
Despite current recommendations, a high percentage of patients with severe symptomatic aortic stenosis are managed conservatively. The aim of this study was to study symptomatic patients undergoing conservative management from the IDEAS registry, describing their baseline clinical characteristics, mortality, and the causes according to the reason for conservative management. Consecutive patients with severe aortic stenosis diagnosed at 48 centers during January 2014 were included. Baseline clinical characteristics, echocardiographic data, Charlson index, and EuroSCORE-II were registered, including vital status and performance of valve intervention during one-year follow-up. For the purpose of this substudy we assessed symptomatic patients undergoing conservative management, including them in 5 groups according to the reason for performing conservative management [I: comorbidity/frailty (128, 43.8%); II: dementia 18 (6.2%); III: advanced age 34 (11.6%); IV: patients’ refusal 62 (21.2%); and V: other reasons 50 (17.1%)]. We included 292 patients aged 81.5 ± 9 years. Patients from group I had higher Charlson index (4 ± 2.3), higher EuroSCORE-II (7.5 ± 6), and a higher overall (42.2%) and non-cardiac mortality (16.4%) than the other groups. In contrast, patients from group III had fewer comorbidities, lower EuroSCORE-II (4 ± 2.5), and low overall (20.6%) and non-cardiac mortality (5.9%). Patients with severe symptomatic aortic stenosis managed conservatively have different baseline characteristics and clinical course according to the reason for performing conservative management. A prospective assessment of comorbidity and other geriatric syndromes might contribute to improve therapeutic strategy in this clinical setting.
Resumo:
Impedance cardiography is an application of bioimpedance analysis primarily used in a research setting to determine cardiac output. It is a non invasive technique that measures the change in the impedance of the thorax which is attributed to the ejection of a volume of blood from the heart. The cardiac output is calculated from the measured impedance using the parallel conductor theory and a constant value for the resistivity of blood. However, the resistivity of blood has been shown to be velocity dependent due to changes in the orientation of red blood cells induced by changing shear forces during flow. The overall goal of this thesis was to study the effect that flow deviations have on the electrical impedance of blood, both experimentally and theoretically, and to apply the results to a clinical setting. The resistivity of stationary blood is isotropic as the red blood cells are randomly orientated due to Brownian motion. In the case of blood flowing through rigid tubes, the resistivity is anisotropic due to the biconcave discoidal shape and orientation of the cells. The generation of shear forces across the width of the tube during flow causes the cells to align with the minimal cross sectional area facing the direction of flow. This is in order to minimise the shear stress experienced by the cells. This in turn results in a larger cross sectional area of plasma and a reduction in the resistivity of the blood as the flow increases. Understanding the contribution of this effect on the thoracic impedance change is a vital step in achieving clinical acceptance of impedance cardiography. Published literature investigates the resistivity variations for constant blood flow. In this case, the shear forces are constant and the impedance remains constant during flow at a magnitude which is less than that for stationary blood. The research presented in this thesis, however, investigates the variations in resistivity of blood during pulsataile flow through rigid tubes and the relationship between impedance, velocity and acceleration. Using rigid tubes isolates the impedance change to variations associated with changes in cell orientation only. The implications of red blood cell orientation changes for clinical impedance cardiography were also explored. This was achieved through measurement and analysis of the experimental impedance of pulsatile blood flowing through rigid tubes in a mock circulatory system. A novel theoretical model including cell orientation dynamics was developed for the impedance of pulsatile blood through rigid tubes. The impedance of flowing blood was theoretically calculated using analytical methods for flow through straight tubes and the numerical Lattice Boltzmann method for flow through complex geometries such as aortic valve stenosis. The result of the analytical theoretical model was compared to the experimental impedance measurements through rigid tubes. The impedance calculated for flow through a stenosis using the Lattice Boltzmann method provides results for comparison with impedance cardiography measurements collected as part of a pilot clinical trial to assess the suitability of using bioimpedance techniques to assess the presence of aortic stenosis. The experimental and theoretical impedance of blood was shown to inversely follow the blood velocity during pulsatile flow with a correlation of -0.72 and -0.74 respectively. The results for both the experimental and theoretical investigations demonstrate that the acceleration of the blood is an important factor in determining the impedance, in addition to the velocity. During acceleration, the relationship between impedance and velocity is linear (r2 = 0.98, experimental and r2 = 0.94, theoretical). The relationship between the impedance and velocity during the deceleration phase is characterised by a time decay constant, ô , ranging from 10 to 50 s. The high level of agreement between the experimental and theoretically modelled impedance demonstrates the accuracy of the model developed here. An increase in the haematocrit of the blood resulted in an increase in the magnitude of the impedance change due to changes in the orientation of red blood cells. The time decay constant was shown to decrease linearly with the haematocrit for both experimental and theoretical results, although the slope of this decrease was larger in the experimental case. The radius of the tube influences the experimental and theoretical impedance given the same velocity of flow. However, when the velocity was divided by the radius of the tube (labelled the reduced average velocity) the impedance response was the same for two experimental tubes with equivalent reduced average velocity but with different radii. The temperature of the blood was also shown to affect the impedance with the impedance decreasing as the temperature increased. These results are the first published for the impedance of pulsatile blood. The experimental impedance change measured orthogonal to the direction of flow is in the opposite direction to that measured in the direction of flow. These results indicate that the impedance of blood flowing through rigid cylindrical tubes is axisymmetric along the radius. This has not previously been verified experimentally. Time frequency analysis of the experimental results demonstrated that the measured impedance contains the same frequency components occuring at the same time point in the cycle as the velocity signal contains. This suggests that the impedance contains many of the fluctuations of the velocity signal. Application of a theoretical steady flow model to pulsatile flow presented here has verified that the steady flow model is not adequate in calculating the impedance of pulsatile blood flow. The success of the new theoretical model over the steady flow model demonstrates that the velocity profile is important in determining the impedance of pulsatile blood. The clinical application of the impedance of blood flow through a stenosis was theoretically modelled using the Lattice Boltzman method (LBM) for fluid flow through complex geometeries. The impedance of blood exiting a narrow orifice was calculated for varying degrees of stenosis. Clincial impedance cardiography measurements were also recorded for both aortic valvular stenosis patients (n = 4) and control subjects (n = 4) with structurally normal hearts. This pilot trial was used to corroborate the results of the LBM. Results from both investigations showed that the decay time constant for impedance has potential in the assessment of aortic valve stenosis. In the theoretically modelled case (LBM results), the decay time constant increased with an increase in the degree of stenosis. The clinical results also showed a statistically significant difference in time decay constant between control and test subjects (P = 0.03). The time decay constant calculated for test subjects (ô = 180 - 250 s) is consistently larger than that determined for control subjects (ô = 50 - 130 s). This difference is thought to be due to difference in the orientation response of the cells as blood flows through the stenosis. Such a non-invasive technique using the time decay constant for screening of aortic stenosis provides additional information to that currently given by impedance cardiography techniques and improves the value of the device to practitioners. However, the results still need to be verified in a larger study. While impedance cardiography has not been widely adopted clinically, it is research such as this that will enable future acceptance of the method.
Resumo:
Physiological pulsatile flow in a 3D model of arterial double stenosis, using the modified Power-law blood viscosity model, is investigated by applying Large Eddy Simulation (LES) technique. The computational domain has been chosen is a simple channel with biological type stenoses. The physiological pulsation is generated at the inlet of the model using the first four harmonics of the Fourier series of the physiological pressure pulse. In LES, a top-hat spatial grid-filter is applied to the Navier-Stokes equations of motion to separate the large scale flows from the subgrid scale (SGS). The large scale flows are then resolved fully while the unresolved SGS motions are modelled using the localized dynamic model. The flow Reynolds numbers which are typical of those found in human large artery are chosen in the present work. Transitions to turbulent of the pulsatile non-Newtonian along with Newtonian flow in the post stenosis are examined through the mean velocity, wall shear stress, mean streamlines as well as turbulent kinetic energy and explained physically along with the relevant medical concerns.
Resumo:
Background: Mitomycin C and etoposide have both demonstrated activity against gastric carcinoma. Etoposide is a topoisomerase II inhibitor with evidence for phase-specific and schedule-dependent activity. Patients and method. Twenty-eight consecutive patients with advanced upper gastrointestinal adenocarcinoma were treated with intravenous (i.v.) bolus mitomycin C 6 mg/m2 on day 1 every 21 days to a maximum of four courses. Oral etoposide capsules 50 mg b.i.d. (or 35 mg b.i.d. liquid) were administered days 1 to 10 extending to 14 days in subsequent courses if absolute neutrophil count >1.5 x 109/l on day 14 of first course, for up to six courses. Results: Twenty-six patients were assessed for response of whom 12 had measurable disease and 14 evaluable disease. Four patients had a documented response (one complete remission, three partial remissions) with an objective response rate of 15% (95% confidence interval (95% CI) 4%-35%). Eight patients had stable disease and 14 progressive disease. The median survival was six months. The schedule was well tolerated with no treatment-related deaths. Nine patients experienced leucopenia (seven grade II and two grade III). Nausea and vomiting (eight grade II, one grade III), fatigue (eight grade II, two grade III) and anaemia (seven grade II, two grade III) were the predominant toxicities. Conclusion: This out-patient schedule is well tolerated and shows modest activity in the treatment of advanced upper gastrointestinal adenocarcinoma. Further studies using protracted schedules of etoposide both orally and as infusional treatment should be developed.
Resumo:
Arachidonic acid metabolism through cyclooxygenase (COX) pathways leads to the generation of biologically active eicosanoids. Eicosanoid expression levels vary during development and progression of gastrointestinal (GI) malignancies. COX-2 is the major COX-isoform responsible for G.I. cancer development/progression. COX-2 expression increases during progression from a normal to cancerous state. Evidence from observational studies has demonstrated that chronic NSAID use reduces the risk of cancer development, while both incidence and risk of death due to G.I. cancers were significantly reduced by daily aspirin intake. A number of randomized controlled trials (APC trial, Prevention of Sporadic Adenomatous Polyps trial, APPROVe trial) have also shown a significant protective effect in patients receiving selective COX-2 inhibitors. However, chronic use of selective COX-2 inhibitors at high doses was associated with increased cardiovascular risk, while NSAIDs have also been associated with increased risk. More recently, downstream effectors of COX-signaling have been investigated in cancer development/progression. PGE 2, which binds to both EP and PPAR receptors, is the major prostanoid implicated in the carcinogenesis of G.I. cancers. The role of TXA 2 in G.I. cancers has also been examined, although further studies are required to uncover its role in carcinogenesis. Other prostanoids investigated include PGD 2 and its metabolite 15d-PGJ2, PGF 1α and PGI 2. Targeting these prostanoids in G.I. cancers has the promise of avoiding cardiovascular toxicity associated with chronic selective COX-2 inhibition, while maintaining anti-tumor reactivity.A progressive sequence from normal to pre-malignant to a malignant state has been identified in G.I. cancers. In this review, we will discuss the role of the COX-derived prostanoids in G.I. cancer development and progression. Targeting these downstream prostanoids for chemoprevention and/or treatment of G.I. cancers will also be discussed. Finally, we will highlight the latest pre-clinical technologies as well as avenues for future investigation in this highly topical research field. © 2011 Elsevier B.V.
Resumo:
Aims: To report cancer-specific and health-related quality-of-life outcomes in patients undergoing radical chemoradiation (CRT) alone for oesophageal cancer. Materials and methods: Between 1998 and 2005, 56 patients with oesophageal cancer received definitive radical CRT, due to local disease extent, poor general health, or patient choice. Data from European Organization for Research and Treatment of Cancer quality-of-life questionnaires QLQ-30 and QLQ-OES24 were collected prospectively. Questionnaires were completed at diagnosis, and at 3, 6 and 12 months after CRT where applicable. Results: The median follow-up was 18 months. The median overall survival was 14 months, with a 51, 26 and 13% 1-, 3- and 5-year survival, respectively. At 12 months after treatment there was a significant improvement compared with before treatment with respect to dysphagia and pain. Global health scores were not significantly affected. Conclusions: Considering the relatively short long-term survival for this cohort of patients, maximising the quality of those final months should be very carefully borne in mind from the outset. The health-related quality-of-life data reported herein helps to establish benchmarks for larger evaluation within randomised clinical trials. © 2007 The Royal College of Radiologists.
Resumo:
To determine whether [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) could predict the pathological response in oesophageal cancer after only the first week of neoadjuvant chemoradiation. Thirty-two patients with localised oesophageal cancer had a pretreatment PET scan and a repeat after the first week of chemoradiation. The change in mean maximum standardised uptake value (SUV) and volume of metabolically active tissue (MTV) was compared with the tumour regression grade (TRG) in the final histology. Those who achieved a TRG of 1 and 2 were deemed responders and 3-5 nonresponders. In the responders (28%), the SUV fell from 12.6 (±6.3) to 8.1 (±2.9) after 1 week of chemoradiation (P = 0.070). In nonresponders (72%), the results were 9.7 (±5.4) and 7.1 (±3.8), respectively (P = 0.003). The MTV in responders fell from 36.6 (±22.7) to 22.3 (±10.4) cm3 (P = 0.180), while in nonresponders, this fell from 35.9 (±36.7) to 31.9 (±52.7) cm3 (P = 0.405). There were no significant differences between responders and nonresponders. The hypothesis that early repeat FDG-PET scanning may predict histomorphologic response was not proven. This may reflect an inflammatory effect of radiation that obscures tumour-specific metabolic changes at this time. This assessment may have limited application in predicting response to multimodal regimens for oesophageal cancer. © 2006 Cancer Research UK.
Resumo:
Objective: To evaluate the burden of malignant neoplasms in Shandong Province in order to provide scientific evidence for policy-making. Methods: The main data for this study were from Shandong third cause of death sampling survey in 2006 and Shandong 2007 cancer prevalence survey. YLLs, YLDs, DALYs and disability weights of each type of cancers were calculated according to the global burdens of disease (GBD) methodology. The direct method was used to estimate YLDs. The uncertainty analysis was conducted following the methodology in GBD study. Results: The total cancers burden in Shandong population was 1 383 thousands DALYs. Lung cancer, liver cancer, stomach cancer and esophagus cancer were the top four cancers with the highest health burden. The burden of the four major cancers together accounted for 71.45% of the total burden of all cancers. 95% of the total burden of malignant tumors was caused by premature death, and only 5.26% of the total cancer burden was due to disability. The uncertainty of total burden estimate was around±11%, the uncertainty of YLDs was bigger than that of YLLs. Conclusion: The health burden due to cancers in Shandong population is heavier than that of the national average level. Liver cancer, lung cancer and stomach cancer should be the major cancers for disease control and prevention in Shandong.
Resumo:
OBJECTIVE: This study explored gene expression differences in predicting response to chemoradiotherapy in esophageal cancer. PURPOSE:: A major pathological response to neoadjuvant chemoradiation is observed in about 40% of esophageal cancer patients and is associated with favorable outcomes. However, patients with tumors of similar histology, differentiation, and stage can have vastly different responses to the same neoadjuvant therapy. This dichotomy may be due to differences in the molecular genetic environment of the tumor cells. BACKGROUND DATA: Diagnostic biopsies were obtained from a training cohort of esophageal cancer patients (13), and extracted RNA was hybridized to genome expression microarrays. The resulting gene expression data was verified by qRT-PCR. In a larger, independent validation cohort (27), we examined differential gene expression by qRT-PCR. The ability of differentially-regulated genes to predict response to therapy was assessed in a multivariate leave-one-out cross-validation model. RESULTS: Although 411 genes were differentially expressed between normal and tumor tissue, only 103 genes were altered between responder and non-responder tumor; and 67 genes differentially expressed >2-fold. These included genes previously reported in esophageal cancer and a number of novel genes. In the validation cohort, 8 of 12 selected genes were significantly different between the response groups. In the predictive model, 5 of 8 genes could predict response to therapy with 95% accuracy in a subset (74%) of patients. CONCLUSIONS: This study has identified a gene microarray pattern and a set of genes associated with response to neoadjuvant chemoradiation in esophageal cancer. The potential of these genes as biomarkers of response to treatment warrants further investigation. Copyright © 2009 by Lippincott Williams & Wilkins.
Resumo:
Objective: Modern series from high-volume esophageal centers report an approximate 40% 5-year survival in patients treated with curative intent and postoperative mortality rates of less than 4%. An objective analysis of factors that underpin current benchmarks within high-volume centers has not been performed. Methods: Three time periods were studied, 1990 to 1998 (period 1), 1999 to 2003 (period 2), and 2004 to 2008 (period 3), in which 471, 254, and 342 patients, respectively, with esophageal cancer were treated with curative intent. All data were prospectively recorded, and staging, pathology, treatment, operative, and oncologic outcomes were compared. Results: Five-year disease-specific survival was 28%, 35%, and 44%, and in-hospital postoperative mortality was 6.7%, 4.4%, and 1.7% for periods 1 to 3, respectively (P < .001). Period 3, compared with periods 1 and 2, respectively, was associated with significantly (P < .001) more early tumors (17% vs 4% and 6%), higher nodal yields (median 22 vs 11 and 18), and a higher R0 rate in surgically treated patients (81% vs 73% and 75%). The use of multimodal therapy increased (P < .05) across time periods. By multivariate analysis, age, T stage, N stage, vascular invasion, R status, and time period were significantly (P < .0001) associated with outcome. Conclusions: Improved survival with localized esophageal cancer in the modern era may reflect an increase of early tumors and optimized staging. Important surgical and pathologic standards, including a higher R0 resection rate and nodal yields, and lower postoperative mortality, were also observed. Copyright © 2012 by The American Association for Thoracic Surgery.
Resumo:
OBJECTIVE: We present and analyze long-term outcomes following multimodal therapy for esophageal cancer, in particular the relative impact of histomorphologic tumor regression and nodal status. PATIENTS AND METHODS: A total of 243 patients [(adenocarcinoma (n = 170) and squamous cell carcinoma (n = 73)] treated with neoadjuvant chemoradiotherapy in the period 1990 to 2004 were followed prospectively with a median follow-up of 60 months. Pathologic stage and tumor regression grade (TRG) were documented, the site of first failure was recorded, and Kaplan-Meier survival curves were plotted. RESULTS: Thirty patients (12%) did not undergo surgery due to disease progression or deteriorated performance status. Forty-one patients (19%) had a complete pathologic response (pCR), and there were 31(15%) stage I, 69 (32%) stage II, and 72 (34%) stage III cases. The overall median survival was 18 months, and the 5-year survival was 27%. The 5-year survival of patients achieving a pCR was 50% compared with 37% in non-pCR patients who were node-negative (P = 0.86). Histomorphologic tumor regression was not associated with pre-CRT cTN stage but was significantly (P < 0.05) associated with ypN stage. By multivariate analysis, ypN status (P = 0.002) was more predictive of overall survival than TRG (P = 0.06) or ypT stage (P = 0.39). CONCLUSION: Achieving a node-negative status is the major determinant of outcome following neoadjuvant chemoradiotherapy. Histomorphologic tumor regression is less predictive of outcome than pathologic nodal status (ypN), and the need to include a primary site regression score in a new staging classification is unclear. © 2007 Lippincott Williams & Wilkins, Inc.