982 resultados para equilibrium equation of number density
Resumo:
To determine the optimal larval density for hatchery culture of the clam Meretrix meretrix, experiments with stocking densities of 5, 10, 20, 40 and 60 larvae ml(-1) were designed, which included the developmental stages from D-veliger to 8 days postsettlement. Shell length, settlement time and survival rate of the larvae were recorded. Results showed that, at each sampling time, larvae reared at the highest density had the smallest mean size, whereas larvae reared at the lowest density had the largest mean size. Statistical differences in mean shell length at different stocking densities appeared from day 2, and greater differences occurred with increased culture time. Specific growth rate (SGR) in the rapid growing stage (day 0-3) was negatively correlated with density; however, no correlation was found between SGR and density in the slow growing stage (days 3-7). Settlement time was prolonged and shell length of settled larvae decreased as density increased. However, larval survival rate (74.8-79.1%) was independent of stocking density. Results showed that a high stocking density, in the designated range, is feasible for larval culture of the clam M. meretrix. However, for large-scale culture, in the interest of costs and safety, a stocking density of 10-20 larvae ml(-1) is recommended. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report the observation of urchin-like nanostructures consisting of high-density spherical nanotube radial arrays of vanadium oxide nanocomposite, successfully synthesized by a simple chemical route using an ethanolic solution of vanadium tri-isopropoxide and alkyl amine hexadecylamine for 7 days at 180oC. The results show that the growth process of the NanoUrchin occurs in stages, starting with a radial self-organized arrangement of lamina followed by the rolling of the lamina into nanotubes. The longest nanotubes are measured to be several micrometers in length with diameters of ~120 nm and hollow centers typically measured to be ~75 nm. The NanoUrchin have an estimated density of nanotubes of ~40 sr-1. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. The interlayer distance is measured to be 2.9 ± 0.1 nm and electron diffraction identified the vanadate phase in the VOx nanocomposite as orthorhombic V2O5. These nanostructures may be used as three-dimensional composite materials and as supports for other materials.
Resumo:
While there is growing interest in measuring the size and scope of local spillovers, it is well understood that such spillovers cannot be distinguished from unobservable local attributes using solely the observed location decisions of individuals or firms. We propose an empirical strategy for recovering estimates of spillovers in the presence of unobserved local attributes for a broadly applicable class of equilibrium sorting models. Our approach relies on an IV strategy derived from the internal logic of the sorting model itself. We show practically how the strategy is implemented, provide intuition for our instruments, discuss the role of effective choice-set variation in identifying the model, and carry-out a series of Monte Carlo simulations to demonstrate performance in small samples. © 2007 The Author(s). Journal compilation Royal Economic Society 2007.
Resumo:
The equilibrium structure of the hydrogen bonded complex H2O HF has been calculated ab initio using the CCSD(T) method with basis sets up to sextuple- quality with diffuse functions and taking into account the basis set superposition error correction. The calculations carried out confirm the importance of diffuse functions and of counterpoise correction to obtain an accurate geometry. The most important point is that the basis set convergence is extremely slow and, for this reason an accurate ab initio structure requires a very large basis set. Nevertheless, the ab initio structure is significantly different from the experimental r0 and rm structures. Analysis of the basis set convergence and of the approximations used for the determination of the experimental structures indicates that the ab initio structure is expected to be more reliable.
Resumo:
The equilibrium structure of acetylene (also named ethyne) has been reinvestigated to resolve the small discrepancies noted between different determinations. The size of the system as well as the large amount of available experimental data provides the quite unique opportunity to check the magnitude and relevance of various contributions to equilibrium structure as well as to verify the accuracy of experimental results. With respect to pure theoretical investigation, quantum-chemical calculations at the coupled-cluster level have been employed together with extrapolation to the basis set limit, consideration of higher excitations in the cluster operator, inclusion of core correlation effects as well as relativistic and diagonal Born-Oppenheimer corrections. In particular, it is found that the extrapolation to the complete basis set limit, the inclusion of higher excitations in the electronic-correlation treatment and the relativistic corrections are of the same order of magnitude. It also appears that a basis set as large as a core-valence quintuple-zeta set is required for accurately accounting for the inner-shell correlation contribution. From a pure experimental point of view, the equilibrium structure has been determined using very accurate rotational constants recently obtained by a global analysis (that is to say that all non-negligible interactions are explicitely included in the Hamiltonian matrix) of rovibrational spectra. Finally, a semi-experimental equilibrium structure (where the equilibrium rotational constants are obtained from the experimental ground state rotational constants and computed rovibrational corrections) has been obtained from the available experimental ground-state rotational constants for ten isotopic species corrected for computed vibrational corrections. Such a determination led to the revision of the ground-state rotational constants of two isotopologues, thus showing that structural determination is a good method to identify errors in experimental rotational constants. The three structures are found in a very good agreement, and our recommended values are rCC 120.2958(7) pm and rCH 106.164(1) pm. © 2011 American Institute of Physics.
Resumo:
Attention has recently focussed on stochastic population processes that can undergo total annihilation followed by immigration into state j at rate αj. The investigation of such models, called Markov branching processes with instantaneous immigration (MBPII), involves the study of existence and recurrence properties. However, results developed to date are generally opaque, and so the primary motivation of this paper is to construct conditions that are far easier to apply in practice. These turn out to be identical to the conditions for positive recurrence, which are very easy to check. We obtain, as a consequence, the surprising result that any MBPII that exists is ergodic, and so must possess an equilibrium distribution. These results are then extended to more general MBPII, and we show how to construct the associated equilibrium distributions.
Resumo:
ate studies(2) and fusion energy research(3,4). Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state(5). These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 10(8) K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves(4), but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately(6-10); however, this 'fast ignitor' approach(7) also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Resumo:
The two-photon resonances of atomic hydrogen (? = 2 × 205.1 nm), atomic nitrogen (? = 2 × 206.6 nm) and atomic oxygen (? = 2 × 225.6 nm) are investigated together with two selected transitions in krypton (? = 2×204.2 nm) and xenon (? = 2×225.5 nm). The natural lifetimes of the excited states, quenching coefficients for the most important collisions partners, and the relevant ratios of the two-photon excitation cross sections are measured. These data can be applied to provide a calibration for two-photon laser-induced fluorescence measurements based on comparisons with spectrally neighbouring noble gas resonances.