979 resultados para energy waste


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have witnessed an unprecedented increase in the price of energy available to industry in the United Kingdom and worldwide. The steel industry, as a major consumer of energy delivered in U.K. (8% of national total and nearly 25% of industrial total) and whose energy costs currently form some 28% of the total manufacturing cost, is very much aware of the need to conserve energy. Because of the complexities of steelmaking processes it is imperative that a full understanding of each process and its interlinking role in an integrated steelworks is understood. An analysis of energy distribution shows that as much as 70% of heat input is dissipated to the environment in a variety of forms. Of these, waste gases offer the best potential for energy conservation. The study identifies areas for and discusses novel methods of energy conservation in each process. Application of these schemes in BSC works is developed and their economic incentives highlighted. A major part of this thesis describes design, development and testing of a novel ceramic rotary regenerator for heat recovery from high temperature waste gases, where no such system is available. The regenerator is a compact, efficient heat exchanger. Application of such a system to a reheating furnace provides a fuel saving of up to 40%. A mathematical model developed is verified on the pilot plant. The results obtained confirm the success of the concept and material selection and outlines the work needed to develop an industrial unit. Last, but not least, the key position of an energy manager in an energy conservation programme is identified and a new Energy Management Model for the BSC is developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: There has been a growing trend towards the use of biomass as a primary energy source, which now contributes over 54% of the European pulp and paper industry energy needs [1]. The remaining part comes from natural gas, which to a large extent serves as the major source of energy for numerous recovered fiber paper mills located in regions with limited available forest resources. The cost of producing electricity to drive paper machinery and generate heat for steam is increasing as world demand for fossil fuels increases. Additionally, recovered fiber paper mills are also significant producers of fibrous sludge and reject waste material that can contain high amounts of useful energy. Currently, a majority of these waste fractions is disposed of by landspreading, incineration, or landfill. Paper mills must also pay a gate fee to process their waste streams in this way and the result of this is a further increase in operating costs. This work has developed methods to utilize the waste fractions produced at recovered fiber paper mills for the onsite production of combined heat and power (CHP) using advanced thermal conversion methods (pyrolysis and gasification) that are well suited to relatively small scales of throughput. The electrical power created would either be used onsite to power the paper making process or alternatively exported to the national grid, and the surplus heat created could also be used onsite or exported to a local customer. The focus of this paper is to give a general overview of the project progress so far and will present the experimental results of the most successful thermal conversion trials carried out by this work to date. Application: The research provides both paper mills and energy providers with methodologies to condition their waste materials for conversion into useful energy. The research also opens up new markets for gasifier and pyrolysis equipment manufacturers and suppliers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary fibre paper mills are significant users of both heat and electricity which is mainly derived from the combustion of fossil fuels. The cost of producing this energy is increasing year upon year. These mills are also significant producers of fibrous sludge and reject waste material which can contain high amounts of useful energy. Currently the majority of these waste fractions are disposed of by landfill, land-spread or incineration using natural gas. These disposal methods not only present environmental problems but are also very costly. The focus of this work was to utilise the waste fractions produced at secondary fibre paper mills for the on-site production of combined heat and power (CHP) using advanced thermal conversion methods (gasification and pyrolysis), well suited to relatively small scales of throughput. The heat and power can either be used on-site or exported. The first stage of the work was the development of methods to condition selected paper industry wastes to enable thermal conversion. This stage required detailed characterisation of the waste streams in terms of proximate and ultimate analysis and heat content. Suitable methods to dry and condition the wastes in preparation for thermal conversion were also explored. Through trials at pilot scale with both fixed bed downdraft gasification and intermediate pyrolysis systems, the energy recovered from selected wastes and waste blends in the form of product gas and pyrolysis products was quantified. The optimal process routes were selected based on the experimental results, and implementation studies were carried out at the selected candidate mills. The studies consider the pre-processing of the wastes, thermal conversion, and full integration of the energy products. The final stage of work was an economic analysis to quantify economic gain, return on investment and environmental benefits from the proposed processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The paper aims to design and prove the concept of micro-industry using trigeneration fuelled by biomass, for sustainable development in rural NW India. Design/methodology/approach: This is being tested at village Malunga, near Jodhpur in Rajasthan. The system components comprise burning of waste biomass for steam generation and its use for power generation, cooling system for fruit ripening and the use of steam for producing distilled water. Site was selected taking into account the local economic and social needs, biomass resources available from agricultural activities, and the presence of a NGO which is competent to facilitate running of the enterprise. The trigeneration system was designed to integrate off-the-shelf equipment for power generation using boilers of approximate total capacity 1 tonne of fuel per hour, and a back-pressure steam turbo-generator (200 kW). Cooling is provided by a vapour absorption machine (VAM). Findings: The financial analysis indicates a payback time of less than two years. Nevertheless, this is sensitive to market fluctuations and availabilities of raw materials. Originality/value: Although comparable trigeneration systems already exist in large food processing industries and in space heating and cooling applications, they have not previously been used for rural micro-industry. The small-scale (1-2 m3/h output) multiple effect distillation (3 effect plus condenser) unit has not previously been deployed at field level. © Emerald Group Publishing Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 87-92%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: A variety of biomass plantations are being raised for energy production. This case study is on energy production potential of seasonal oil bearing crops in India. These crops have the advantage of producing oil (liquid fuel) as well as biomass as agro residue (solid fuel). The purpose of the study is to estimate total energy yields of oil bearing crops and compare with other types of energy plantations. Also oil bearing crops bioaccumulate metals and thus phytoremediate soil. This provides scope for waste water irrigation. Design/methodology/approach: Relevant published papers on energy production by raising oil bearing crops have been analyzed. The effect of waste water irrigation and agronomic practices on increasing productivity is given special attention. Findings: It is shown that the seasonal oil bearing crops such as castor have a high potential to generate energy and this is comparable to energy produced by many perennial grasses. The energy yields of castor under irrigated condition was 196×103 MJ/ha and this is comparable to the reed canary grass which yields 195×103 MJ/ha. Some of the oil bearing crops are also super accumulators of certain toxic metals. Research limitations/implications: In this study, only all the accessible papers on the topic could be analyzed. Practical implications: This case study indicates that raising oil bearing crops such as castor using waste water has many advantages which include high energy yields, utilization of waste water for productive purpose and phytoremediation of soil. Originality/value: The comparison made between various types of energy crops for their energy generation is an original contribution. Findings of economic and environmental benefits by waste water irrigation are also of value. © Emerald Group Publishing Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainability has become a watchword and guiding principle for modern society, and with it a growing appreciation that anthropogenic 'waste', in all its manifold forms, can offer a valuable source of energy, construction materials, chemicals and high value functional products. In the context of chemical transformations, waste materials not only provide alternative renewable feedstocks, but also a resource from which to create catalysts. Such waste-derived heterogeneous catalysts serve to improve the overall energy and atom-efficiency of existing and novel chemical processes. This review outlines key chemical transformations for which waste-derived heterogeneous catalysts have been developed, spanning biomass conversion to environmental remediation, and their benefits and disadvantages relative to conventional catalytic technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination of seawater driven by solar and other sustainable energy sources could in principle fulfil the growing needs of the world's most water-stressed countries. Reverse osmosis (RO) has become the most efficient process for desalination, making it the technology of choice for use with solar energy, and photovoltaics (PV) has become the most successful technology for solar energy conversion. But despite recent gains in the efficiency of PV-RO, substantial improvements are still possible because of the numerous energy losses occurring between input of sunlight and output of freshwater. This chapter gives an overview of some of the research activities and recent advances that could ultimately result in solar-powered RO systems becoming more than 10 times efficient than today. It also describes advances in waste heat recovery for RO desalination that are yielding greatly improved performance over desalination processes based on distillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siloxanes are widely used in personal care and industrial products due to their low surface tension, thermal stability, antimicrobial and hydrophobic properties, among other characteristics. Volatile methyl siloxanes (VMS) have been detected both in landfill gas and biogas from anaerobic digesters at wastewater treatment plants. As a result, they are released to gas phase during waste decomposition and wastewater treatment. During transformation processes of digester or landfill gas to energy, siloxanes are converted to silicon oxides, leaving abrasive deposits on engine components. These deposits cause increased maintenance costs and in some cases complete engine overhauls become necessary. The objectives of this study were to compare the VMS types and levels present in biogas generated in the anaerobic digesters and landfills and evaluate the energetics of siloxane transformations under anaerobic conditions. Siloxane emissions, resulting from disposal of silicone-based materials, are expected to increase by 29% within the next 10 years. Estimated concentrations and the risk factors of exposure to siloxanes were evaluated based on the initial concentrations, partitioning characteristics and persistence. It was determined that D4 has the highest risk factor associated to bioaccumulation in liquid and solid phase, whereas D5 was highest in gas phase. Additionally, as siloxanes are combusted, the particle size range causes them to be potentially hazardous to human health. When inhaled, they may affix onto the alveoli of the lungs and may lead to development of silicosis. Siloxane-based COD-loading was evaluated and determined to be an insignificant factor concerning COD limits in wastewater. Removal of siloxane compounds is recommended prior to land application of biosolids or combustion of biogas. A comparison of estimated costs was made between maintenance practices for removal of siloxane deposits and installation/operation of fixed-bed carbon absorption systems. In the majority of cases, the installation of fixed-bed adsorption systems would not be a feasible option for the sole purpose of siloxane removal. However they may be utilized to remove additional compounds simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A small scale sample nuclear waste package, consisting of a 28 mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500 keV), with a source size of <0.5 mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30 cm2 scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10 Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications. In particular, a coolant heat exchanger (CLT) allows the heat exchange between the water coolant and the ORC working fluid, whereas the exhausted gas heat is recovered by using a secondary circuit with diathermic oil. By using an in-house numerical model, a wide range of working conditions and ORC design parameters are investigated. In particular, the analyses are focused on the regenerator location inside the ORC circuits. Five organic fluids, working in both subcritical and supercritical conditions, have been selected in order to detect the most suitable configuration in terms of energy and exergy efficiencies.