931 resultados para elliptic wedge generators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi’s (1829) 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the η-function identities in appendix I of Macdonald’s work [Macdonald, I. G. (1972) Invent. Math. 15, 91–143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415–456] identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson’s Cℓ nonterminating 6φ5 summation theorem, and Andrews’ basic hypergeometric series proof of Jacobi’s 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine infinite dimensional analysis (in particular a priori estimates and twist positivity) with classical geometric structures, supersymmetry, and noncommutative geometry. We establish the existence of a family of examples of two-dimensional, twist quantum fields. We evaluate the elliptic genus in these examples. We demonstrate a hidden SL(2,ℤ) symmetry of the elliptic genus, as suggested by Witten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master, Mathematics & Statistics) -- Queen's University, 2016-07-04 20:27:20.386

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analogue and finite element numerical models with frictional and viscous properties are used to model thrust wedge development. Comparison between model types yields valuable information about analogue model evolution, scaling laws and the relative strengths and limitations of the techniques. Both model types show a marked contrast in structural style between ‘frictional-viscous domains’ underlain by a thin viscous layer and purely ‘frictional domains’. Closely spaced thrusts form a narrow and highly asymmetric fold-and-thrust belt in the frictional domain, characterized by in-sequence propagation of forward thrusts. In contrast, the frictional-viscous domain shows a wide and low taper wedge and a thrust belt with a more symmetrical vergence, with both forward and back thrusts. The frictional-viscous domain numerical models show that the viscous layer initially simple shears as deformation propagates along it, while localized deformation resulting in the formation of a pop-up structure occurs in the overlying frictional layers. In both domains, thrust shear zones in the numerical model are generally steeper than the equivalent faults in the analogue model, because the finite element code uses a non-associated plasticity flow law. Nevertheless, the qualitative agreement between analogue and numerical models is encouraging. It shows that the continuum approximation used in numerical models can be used to model frictional materials, such as sand, provided caution is taken to properly scale the experiments, and some of the limitations are taken into account.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: