996 resultados para electron acceleration
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6, (DSP) and Ca2Pb(C2H5COO)6, (DLP) and Ca2Ba(C2H5COO)6, (DBP), in single crystals and powders, over the temperature range from 300°C to -180°C have been carried out to study the successive phase transitions in these compounds. Spectra have been analyzed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. Across the I-II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurrence of ferroelectricity. The II-III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. Similarities and dissimilarities of the ESR spectra of DLP, DSP and DBP are discussed in relation to the phase transitions.
Resumo:
By using electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed hysteresis behavior of capacitance-voltage (C-V) characteristics of IZO/polyterpenol (PT)/C₆₀/pentacene/Au diodes, where PT layer is actively working as a hole-transport electron-blocking layer. The EFISHG measurement verified the presence of interface accumulated charges in the diodes, and showed that a space charge electric field from accumulated excess electrons (holes) that remain at the PT/C₆₀ (C₆₀/pentacene) interface is responsible for the hysteresis loop observed in the C-V characteristics.
Resumo:
The carrier blocking property of polyterpenol thin films derived from non-synthetic precursor is studied using Electric Field Induced Optical Second Harmonic Generation (EFISHG) technique that can directly probe carrier motion in organic materials. A properly biased double-layer MIM device with a structure of indium zinc oxide (IZO)/polyterpenol/C₆₀/Al shows that by incorporating the polyterpenol thin film, the electron transport can be blocked while the hole transport is allowed. The inherent electron blocking hole transport property is verified using Al/C₆₀/Alq3/polyterpenol/IZO and Al/Alq3/polyterpenol/IZO structures. The rectifying property of polyterpenol is very promising and can be utilized in the fabrication of many organic devices.
Resumo:
Electron spin resonance (ESR) of d5 ions (Fe3+ and Mn2+) has been investigated in PbO---PbF2 and PbO---PbCl2 glasses in wide ranges of composition. ESR spectra of d5 ions in these glasses exhibit significant differences which we have attributed to at least three important causes: (i) The ionic potentials of Fe3+ and Mn2+ are different. Hence Fe3+ ions tend to acquire their own environment while Mn2+ ions take up substitutional (Pb2+ ion) positions. (ii) The sizes and nephelauxetic behaviours of O2- and F- ions are similar. Thus even when there is a mixed anionic coordination, the environment of Mn2+ ions is highly symmetrical in oxyfluoride glasses. The Mn2+ spectra in oxychloride glasses are considerably different. (iii) Increase in halide ion concentration increases the ionicity of lead-ligand bonding and favours a more symmetrical environment around dopant ions in halide-rich glasses. The features in ESR spectra have been interpreted in the light of known behaviour of d5 ions in glasses and also in the context of known structural features of PbO---PbX2 glasses. Dopant ions appear to cluster at high concentrations although isolated low-symmetry sites are still observed. Effects of crystallization and annealing upon ESR spectra have also been investigated.
Resumo:
L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{45}$, L$_{23}$ M$_{45}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ and L$_{23}$ M$_{23}$ M$_{45}$/L$_{23}$ M$_{23}$ M$_{23}$ Auger intensity ratios in transition metal oxides and sulphides are shown to be directly related to the number of valence electrons in the metal as well as to its oxidation state. The metal Auger intensity ratios provide a unique probe, independent of O (KLL) intensity, to study surface oxidation states of metals. These intensity ratios have been effectively employed to investigate surface oxidation of nickel, iron and copper. The oxidation studies have unravelled some interesting aspects of surface oxidation.
Resumo:
Ultraviolet and x-ray photoelectron spectroscopy have been employed to investigate the adsorption of methanol, ethanol, diethylether, acetaldehyde, acetone, methyl acetate and methylamine on surfaces of Fe, Ni and Cu. All these molecules adsorb molecularly at low temperatures (≤100 K). Lone pair orbitals of these molecules are stabilized on these metal surfaces (by 0·4–1·0eV) due to molecular chemisorption. The molecules generally undergo transformations as the temperature is raised to 120 K or above. The new species produced seems to depend on the metal surface. Some of the product species identified are methoxy species, formaldehyde and carbon monoxide in the case of methanol and methyl acetate, ethoxy species in the case of ethanol and 2-propanol in the case of acetone.
Resumo:
Structural defects of three chloritoid minerals from distinet geologic melieu have been investigated by high resolution electron microscopy. X-ray powder and electron diffraction patterns indicate that the chloritoid from one geological source (A) is2M 1+2M2 monoclinic variant while those from another geological source (B) are 2M 2 monoclinic variants. In a typical one-dimensional lattice image of a crystal from sourceA, the 2M 2 matrix is broken by insertion of triclinic inter-growths. Another crystal with the 2M 2 matrix showed single, triple, quadruple and quintuple layers displaying an unusually high degree of disorder. Lattice images of 2M 2 monoclinic variants from sourceB yielded more homogeneous micrographs. The important finding from the present studies is that the chloritoid from sourceA is a severely disordered low-temperature intermediate phase in the conversion of the triclinic chloritoid to the high-temperature ordered monoclinic variants of sourceB. Severely disordered chloritoids, marking the beginning of low grade metamorphism, are generated as intermediates between the state of complete disordered arrangement towards the end of low grade metamorphism within the narrow stability range of 400°–500°C.
Resumo:
Microbes and their exopolysaccharides (EPS) can block xylem vessels, thereby increasing the hydraulic resistance and decreasing the vase life of cut flowers and foliage. Scanning electron microscopy (SEM) provides a powerful tool for investigation of bacteria-induced xylem occlusion. However, conventional preparation protocols for SEM involving chemicals can cause loss of hydrated EPS material, and thereby damage the bacterial biofilms during dehydration. A modified chemical fixation protocol involving pre-fixation with 75 mM lysine plus 2.5% glutaraldehyde followed by the normal fixation in 3% glutaraldehyde was, therefore, tested for improved preservation of bacterial biofilm at the stem-ends of cut Acacia holosericea foliage stems. Stem-end segments with different stages of bacterial growth were obtained from stems stood into water. The lysine-based protocol was compared with four other processing protocols of critical point drying (CPD) without fixation (control), freeze-drying (FD), conventional chemical fixation followed by drying with hexamethyldisilazane (HMDS), and conventional chemical fixation with CPD. The non-fixed control. FD and the glutaraldehyde fixation with HMDS drying gave poor preservation of hydrated material, including bacterial EPS. Conventional glutaraldehyde fixation followed by CPD was superior to these three methods in terms of better preserving the EPS. However, this fourth method gave condensation of biofilms during dehydration. In contrast, the modified lysine-based protocol resulted in superior preservation of EPS and biofilm structure. Thus, this fifth method was the most appropriate for examination of bacterial stem-end blockage in cut ornamentals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Adsorption of CO has been investigated on the surfaces of polycrystalline transition metals as well as alloys by employing electron energy loss spectroscopy (eels) and ultraviolet photoelectron spectroscopy (ups). CO adsorbs on polycrystalline transition metal surfaces with a multiplicity of sites, each being associated with a characteristic CO stretching frequency; the relative intensities vary with temperature as well as coverage. Whilst at low temperatures (80- 120 K), low coordination sites are stabilized, the higher coordination sites are stabilized at higher temperatures (270-300 K). Adsorption on surfaces of polycrystalline alloys gives characteristic stretching frequencies due to the constituent metal sites. Alloying, however, causes a shift in the stretching frequencies, indicating the effect of the band structure on the nature of adsorption. The up spectra provide confirmatory evidence for the existence of separate metal sites in the alloys as well as for the high-temperature and low-temperature phases of adsorbed CO.
Resumo:
Oxygen is shown to adsorb molecularly on gold as well as on Ag and Pt. UV and X-ray photoelectron spectroscopy and Auger electron spectroscopy have been employed to investigate electron states of molecularly adsorbed oxygen.
Resumo:
A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.
Resumo:
The earlier work on the possibility of interband electron pairing in the presence of a strong radiation field has been further extended. Some additional terms, neglected earlier, have been taken into account and generalized to a situation where the electron-phonon coupling coefficients for the two conduction bands (valleys) are different. It is found that the pairing interaction is attractive and the strength depends on the photon density.
Resumo:
Examination of the structure of worn surfaces has shown that the wear of LM13 and LM13-graphite particulate composite is controlled by the nature and extent of subsurface deformation. The addition of graphite influences the wear characteristics by affecting the plastically deformed zone. The possible mechanisms of wear are discussed.