769 resultados para elbow flexion
Resumo:
Estimulação transcraniana por corrente contínua (ETCC) sobre áreas corticais pré-selecionadas, tem aumentado o desempenho físico de diferentes populações. Porém, lacunas persistem no tocante aos mecanismos subjacentes à estes efeitos. Assim, a presente tese objetivou: a) investigar os efeitos da ETCC anódica (aETCC) e placebo (Sham) no córtex motor (CM) de indivíduos saudáveis sobre o desempenho de força máxima; b) comparar os efeitos da ETCC sobre a produção de força máxima e estabilidadade da força durante exercícios máximo e submáximo em sujeitos hemiparéticos e saudáveis; c) investigar o efeito da ETCC sobre a conectividade funcional inter-hemisférica (coerência eletroencefalográfica cEEG) do córtex pré-frontal (CPF), desempenho aeróbio e dispêndio energético (EE) durante e após exercício máximo e submáximo. No 1 estudo, 14 adultos saudáveis executaram 2 sessões de exercício máximo de força (EMF) dos músculos flexores e extensores do joelho dominante (3 séries de 10 rep máximas), precedidos por aETCC ou Sham (2mA; 20 mim). aETCC não foi capaz de aumentar o trabalho total e pico de torque (PT), resistência à fadiga ou atividade eletromiográfica durante o EMF. No 2 estudo, 10 hemiparéticos e 9 sujeitos saudáveis receberam aETCC e Sham no CM. O PT e a estabilidade da força (coeficiente de variação - CV) foram avaliados durante protocolo máximo e submáximo de extensão e flexão unilateral do joelho (1 série de 3 reps a 100% do PT e 2 séries de 10 reps a 50% do PT). Nenhuma diferença no PT foi observada nos dois grupos. Diminuições no CV foram obervadas durante a extensão (~25-35%, P<0.001) e flexão de joelho (~22-33%, P<0.001) após a aETCC comparada com Sham nos hemiparéticos, entretanto, somente o CV na extensão de joelhos diminuiu (~13-27%, P<0.001) nos saudáveis, o que sugere que aETCC pode melhorar o CV, mas não o PT em sujeitos hemiparéticos. No 3 estudo, 9 adultos saudáveis realizaram 2 testes incrementais máximos precedidos por aETCC ou Sham sobre o CPF com as respostas cardiorrespiratórias, percepção de esforço (PSE) e cEEG do CPF sendo monitoradas. O VO2 de pico (42.64.2 vs. 38.23.3 mL.kg.min-1; P=0,02), potência total (252.776.5 vs. 23773.3 W; P=0,05) e tempo de exaustão (531.1140 vs. 486.7115.3 seg; P=0,04) foram maiores após aETCC do que a Sham. Nenhuma diferença foi encontrada para FC e PSE em função da carga de trabalho (P>0,05). A cEEG do CPF aumentou após aETCC vs. repouso (0.700.40 vs. 0.380.05; P=0,001), mas não após Sham vs. repouso (0.360.49 vs. 0.330.50; P=0,06), sugerindo que a aETCC pode retardar a fadiga aumentando a conectividade funcional entre os hemisférios do CPF e desempenho aeróbio durante exercício exaustivo. No 4 estudo, o VO2 e EE foram avaliados em 11 adultos saudáveis antes, durante a aETCC ou Sham no CPF e 30 min após exercício aeróbio submáximo isocalórico (~200kcal). Diferenças não foram observadas no VO2 vs. repouso durante aETCC e Sham (P=0.95 e P=0.85). Porém, a associação entre exercício e aETCC aumentou em ~19% o EE após ao menos, 30 min de recuperação após exercício quando comparada a Sham (P<0,05).
Resumo:
Prior to Pietsch’s (1993) revision of the genus Triglops, identification of their larvae was difficult; six species co-occur in the eastern North Pacific Ocean and Bering Sea and three co-occur in the western North Atlantic Ocean. We examined larvae from collections of the Alaska Fisheries Science Center and Atlantic Reference Centre and used updated meristic data, pigment patterns, and morphological characters to identify larvae of Triglops forficatus, T. macellus, T. murrayi, T. nybelini, T. pingeli, and T. scepticus; larvae of T. metopias, T. dorothy, T. jordani, and T. xenostethus have yet to be identified and are thus not included in this paper. Larval Triglops are characterized by a high myomere count (42–54), heavy dorsolateral pigmentation on the gut, and a pointed snout. Among species co-occurring in the eastern North Pacific Ocean, T. forficatus, T. macellus, and T. pingeli larvae are distinguished from each other by meristic counts and presence or absence of a series of postanal ventral melanophores. Triglops scepticus is differentiated from other eastern North Pacific Ocean larvae by having 0–3 postanal ventral melanophores, a large eye, and a large body depth. Among species co-occurring in the western North Atlantic Ocean, T. murrayi and T. pingeli larvae are distinguished from each other by meristic counts (vertebrae, dorsal-fin rays, and anal-fin rays once formed), number of postanal ventral melanophores, and first appearance and size of head spines. Triglops nybelini is distinguished from T. murrayi and T. pingeli by a large eye, pigment on the lateral line and dorsal midline in flexion larvae, and a greater number of dorsal-fin rays and pectoral-fin rays once formed.
Resumo:
Larval development of the southern sea garfish (Hyporhamphus melanochir) and the river garfish (H. regularis) is described from specimens from South Australian waters. Larvae of H. melanochir and H. regularis have completed notochord flexion at hatching and are characterized by an elongate body with distinct rows of melanophores along the dorsal, lateral, and ventral surfaces; a small to moderate head; a heavily pigmented and long straight gut; a persistent pre-anal finfold; and an extended lower jaw. Fin formation occurs in the following sequence: caudal, dorsal and anal (almost simultaneously), pectoral, and pelvic. Despite the similarities between both species and among hemiramphid larvae in general, H. melanochir larvae are distinguishable from H. regularis by 1) having 58–61 vertebrae (vs. 51–54 for H. regularis); 2) having 12–15 melanophore pairs in longitudinal rows along the dorsal margin between the head and origin of the dorsal fin (vs. 19–22 for H. regularis); and 3) the absence of a large ventral pigment blotch anteriorly on the gut and isthmus (present in H. regularis). Both species can be distinguished from similar larvae of southern Australia (other hemiramphids and a scomberosocid) by differences in meristic counts and pigmentation.
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
Post larval stages of Psettina Iijimae ranging from 1.8 mm NL to 44.6 mm SL collected during Naga Expedition and International Indian Ocean Expedition (IIOE) are described. The characteristics which help to identify larval stages of Psettina are: the presence of pigmented urohyal appendage in early stages which is progressively reduced during flexion stages and which disappears in later postflexion stages, the meristics, the spines on urohyal and posterior basipterygial processes and the absence of spines on cleithra. The P. iijimae can be distinguished by the presence of spines on the median fin rays which differentiate near the baseosts along the dorsal and ventral body wall much before the fin rays. The larvae of P.iijimae were more abundant in the Gulf of Thailand compared to South China Sea and Indian Ocean.
Resumo:
The larval ontogeny of a developmental series (1.2-8.3mm body length, BL) of Synagrops philippinensis from Kagoshima Bay, southern Japan is described and illustrated. The yolk was completely absorbed in larva of ≥1.5 mm BL. Notochord flexion commenced at about 3.5mm BL and was completed by about 4.0-4.5mm BL. S. philippinensis larvae were distinguished from their congeners based on melanophore patterns, head spination and fin spines and rays. Larvae of 7.5-8.3 mm BL were characterized by anteriorly serrated pelvic spine, two anal spines, nine inner preopercular spines and no melanophore on lateral side of the caudal peduncle; 7.0 to 7.5mm BL larvae by the above characters except serration on pelvic spine; and yolk-sac, pre-flexion, flexing and post-flexion larvae up to 7.0mm BL by unique melanophores on lower lobe of pectoral finfold/fin.
Resumo:
In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.
Resumo:
The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.
Resumo:
This study investigates the interaction between soil and pipeline in sand subjected to lateral ground displacements with emphasis on the peak force exerted to a bended elbow-pipe. A series of three-dimensional (3D) finite-element (FE) analyses were performed in both opening and closing modes of the elbow section for different initial pipe bending angles. To model the mechanical behavior of sands, two soil models were adopted: Mohr-Coulomb and Nor-Sand soil model. Investigations also included the effects of pipe embedment depth and soil density. Results show that the opening mode exhibits higher ultimate forces and greater localized deformations than the closing mode. Nondimensional charts that account for pipeline location, bending angle, and soil density are developed. Soil-spring pipeline analyses of an elbow-pipe were performed using modified F-δ soil-spring models based on the 3D FE results and were compared to the findings of conventional spring model analyses using the standard two-dimensional soil-spring model. Results show that the pipe strain does not change in the closing mode case. However, in the opening mode case, the pipe strain computed by the modified analysis is larger than that by the conventional analysis and the difference is more pronounced when the pipe stiffness is stiffer. © 2011 American Society of Civil Engineers.
Resumo:
Successful motor performance requires the ability to adapt motor commands to task dynamics. A central question in movement neuroscience is how these dynamics are represented. Although it is widely assumed that dynamics (e.g., force fields) are represented in intrinsic, joint-based coordinates (Shadmehr R, Mussa-Ivaldi FA. J Neurosci 14: 3208-3224, 1994), recent evidence has questioned this proposal. Here we reexamine the representation of dynamics in two experiments. By testing generalization following changes in shoulder, elbow, or wrist configurations, the first experiment tested for extrinsic, intrinsic, or object-centered representations. No single coordinate frame accounted for the pattern of generalization. Rather, generalization patterns were better accounted for by a mixture of representations or by models that assumed local learning and graded, decaying generalization. A second experiment, in which we replicated the design of an influential study that had suggested encoding in intrinsic coordinates (Shadmehr and Mussa-Ivaldi 1994), yielded similar results. That is, we could not find evidence that dynamics are represented in a single coordinate system. Taken together, our experiments suggest that internal models do not employ a single coordinate system when generalizing and may well be represented as a mixture of coordinate systems, as a single system with local learning, or both.
Resumo:
沙蜥属Phrynocephalus Kaup,1825隶属于爬行纲(Reptilia)有鳞目(Squamata)蜥蜴亚目(Lacertilia)鬣蜥科(Agamidae),是欧亚大陆荒漠和稀疏草原常见蜥蜴。沙蜥属的分类及系统演化关系、地理分布格局与新生代第三纪以来古地中海的变迁、青藏高原的抬升及亚洲内陆干旱荒漠化的过程有密切的关系,长期以来有关沙蜥属的研究一直受到中外学者们的关注。由于沙蜥属地理分布广、形态变异大、体色和斑纹变化复杂,虽然前人使用过许多形态性状来描述和分类沙蜥属物种,但是仍然存在许多问题。性状的分类学意义不明确是造成这些问题的主要原因之一,因此本研究针对沙蜥属常用的鉴别性状进行分类意义的分析,希望能对沙蜥属物种鉴定及分类学其它研究有所裨益。 中国沙蜥属物种主要分布于西北的干旱荒漠区域及青藏高原的大部分地区,大约为18种。 本文研究了中国境内12种沙蜥:青海沙蜥(Phrynocephalus vlangalii)、西藏沙蜥(P. theobaldi)、南疆沙蜥(P. forsythii)、变色沙蜥(P. versicolor)、旱地沙蜥(P. helioscopus)、荒漠沙蜥(P. przewalskii)、乌拉尔沙蜥(P. guttatus)、草原沙蜥(P. frontalis)、叶城沙蜥(P. axillaris)、白稍沙蜥(P. koslowi)、无斑沙蜥(P. immaculatus)和白条沙蜥(P. albolineatus),对它们的65项外部形态性状进行了观察和测量,其中数量性状29项、质量性状36项。评价了这些性状的序级性、间断性和代表性,结论如下: 1. 对于数量性状,得出了适合各级分类的数值区间; 2. 给出了在不同序级上适合分类的质量性状。 并利用各性状评价的结果,给出12种沙蜥的检索表,以及对中国沙蜥物种某些尚存在争议的问题进行了探讨。 详细记录了青海沙蜥红原亚种的骨骼系统,首次发现并命名了肘骨(elbow bone)和垫骨(stepping bone),为沙蜥属系统学研究补充了骨骼方面的证据;解剖了乌拉尔沙蜥、旱地沙蜥、荒漠沙蜥的雌体和雄体的骨骼系统,并在14项骨骼形态性状上对这3种沙蜥进行了比较。 Phrynocephalus (Squamata,Agamidae) is a familiar genus of lizards inhabited desert and sparse steppes in Eurasia. The taxonomics, phylogenetics and distribution pattern of Phrynocephalus are relative intensely to these events: the vicissitudes of the archaic Mediterranean sea since the Cainozoic, the uplift of Qingzang Plateau and the expending arid areas in the inland of Asia. Owing to the wide distribution, the large variability of the morphology and the different colors in Phrynocephalus, it is difficult to identify them. Tough many morphological characters are used to describe and discriminate them,a lot of questions still exist. One of the most important reasons is the confusion in the morphological characters. In this study, we demonstrate the validity and the invalidity of the familiar characters. There are about 18 species of the genus Phrynocephalus in China, which exist in arid desert in Northwest China and Qingzang Plateau. Twelve Chinese species was analyzed in this paper. They are P. vlangalii,P. theobaldi,P. forsythia,P. versicolor,P. helioscopus,P. przewalskii,P. guttatus,P. frontalis,P. axillaris,P. koslowi,P. immaculatus,P. albolineatus. We measure 29 quantitative characters and observe 36 qualitative characters in each individual. Through analyzing these characters, we made some conclusions as follows: 1. to every quantitative character, we get a clear numeric area to discriminate the different operational taxonomic units. 2. we chose the valid qualitative characters in these operational taxonomic units. This paper is the first to describe the “elbow bone”, which is a bone in pectoral appendage equivalent to patella,and “stepping bone”, which is a bone under carpal. A detailed description of the skeletal system of female Phrynocephalus vlangalii hongyuanensis was conducted. We also anatomise the skeletal systems of three species: P. guttatus,P. przewalskii,P. helioscopus, and compare or contrast 14 skeletal characters in them. What’s more,this paper offers some suggestions to the questions of Chinese Phrynocephalus species and keys to 12 species of Phrynocephalus basing on our conclusions on the evaluation of the morphological characters.
Resumo:
The replacement of coronene monolayer on Au (111) by 6-mercapto-1-hexanol (MHO) was studied by in situ scanning tunneling microscopy (STM) in solutions. It was found that the rate of replacement depends strongly on the concentration of MHO. The replacement finished within a second at a higher concentration of MHO. At a lower concentration, the slow replacement could be followed by in situ STM. The replacement occurred initially near the elbow position of reconstructed Au (111) with the formation of pits in a single or several missing molecules. With the proceeding of replacement, these small pits expanded, and the surrounding coronene molecules were gradually substituted by MHO, which developed into ordered domains within a spatial confined environment. Meanwhile, the reconstruction of Au (111) was lifted. The replacement expanded fast along the reconstruction lines in the domain. For the fast replacement, a (root 3 x root 3) R30 degrees adlattice was observed, while a c(4 x 2) superlattice was observed for the slow replacement.
Resumo:
The effect of lanthanum ions on the structural and conformational change of yeast tRNA(Phe) was studied by H-1 NMR. The results suggest that the tertiary base pair (G-15)(C-48), which was located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by adding La3+ and shifted 0.33 downfield. Based pair (U-8)(A-14), which is associated with a tertiary interaction, links the base of the acceptor stem to the D-stem and anchors the elbow of the L structure, shifted 0.20 upfield. Another imino proton that may be affected by La3+ in tRNA(Phe) is the tertiary base pair (G-19)(C-56). The assignment of this resonance is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.2. This base pair helps to anchor the D-loop to the T psi C loop.
Resumo:
BACKGROUND: Anterior cruciate ligament (ACL) reconstruction is associated with a high incidence of second tears (graft tears and contralateral ACL tears). These secondary tears have been attributed to asymmetrical lower extremity mechanics. Knee bracing is one potential intervention that can be used during rehabilitation that has the potential to normalize lower extremity asymmetry; however, little is known about the effect of bracing on movement asymmetry in patients following ACL reconstruction. HYPOTHESIS: Wearing a knee brace would increase knee joint flexion and joint symmetry. It was also expected that the joint mechanics would become more symmetrical in the braced condition. OBJECTIVE: To examine how knee bracing affects knee joint function and symmetry over the course of rehabilitation in patients 6 months following ACL reconstruction. STUDY DESIGN: Controlled laboratory study. LEVEL OF EVIDENCE: Level 3. METHODS: Twenty-three adolescent patients rehabilitating from ACL reconstruction surgery were recruited for the study. The subjects all underwent a motion analysis assessment during a stop-jump activity with and without a functional knee brace on the surgical side that resisted extension for 6 months following the ACL reconstruction surgery. Statistical analysis utilized a 2 × 2 (limb × brace) analysis of variance with a significant alpha level of 0.05. RESULTS: Subjects had increased knee flexion on the surgical side when they were braced. The brace condition increased knee flexion velocity, decreased the initial knee flexion angle, and increased the ground reaction force and knee extension moment on both limbs. Side-to-side asymmetry was present across conditions for the vertical ground reaction force and knee extension moment. CONCLUSION: Wearing a knee brace appears to increase lower extremity compliance and promotes normalized loading on the surgical side. CLINICAL RELEVANCE: Knee extension constraint bracing in postoperative ACL patients may improve symmetry of lower extremity mechanics, which is potentially beneficial in progressing rehabilitation and reducing the incidence of second ACL tears.
Resumo:
The importance of relative motion information when modelling a novel motor skill was examined. Participants were assigned to one of four groups. Groups 1 and 2 viewed demonstrations of a skilled cricket bowler presented in either video or point light format. Group 3 observed a single point of light pertaining to the wrist of the skilled bowler only. Participants in Group 4 did not receive a demonstration and acted as controls. During 60 acquisition trials, participants in the demonstration groups viewed a model five times before each 10-trial block. Retention was examined the following day. Intra-limb coordination was assessed for the right elbow relative to the wrist in comparison to the model. The demonstration groups showed greater concordance with the model than the control group. However, the wrist group performed less like the model than the point light and video groups, who did not differ from each other. These effects were maintained in retention. Relative motion information aided the acquisition of intra-limb coordination, while making this information more salient (through point lights) provided no additional benefit. The motion of the models bowling arm was replicated more closely than the non-bowling arm, suggesting that information from the end-effector is prioritized during observation for later reproduction.