824 resultados para early detection
Resumo:
主动队列管理(active queue management,简称AQM)是网络拥塞控制的研究热点之一,其中的关键问题是如何设计反馈控制策略.提出一种新的基于D稳定域和时间乘以误差绝对值乘积积分(integral of time-weighted absolute error,简称ITAE)性能准则的比例-积分-微分(proportional-integral-differential,简称PID)优化设计方法(简称DITAE-PID),并用于AQM控制器的设计,控制闭环系统的理想动态性能.首先在复平面上设定一组理想的D稳定域,然后以ITAE为目标函数,通过数值优化算法求出控制器的参数,使得闭环系统的所有特征根都在D稳定域内,以降低排队延时,提高有效吞吐量.对比仿真实验结果表明孩算法能够预先探测和控制拥塞,有较好的鲁棒性,链路利用率更高,丢包率更小,平均队列长度更趋于期望值,同时,趋于期望队列长度的时间更短,其综合性能明显优于典型的随机早期探测(random early detection,简称RED)和比例-积分(proportional-integral,简称PI)算法.
Resumo:
The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.
Resumo:
The p16 tumor suppressor gene is inactivated by promoter region hypermethylation in many types of tumor. Recent studies showed that aberrant methylation of the p16 gene is an early event in many tumors, especially in lung cancer, and may constitute a new biomarker for early detection and monitoring of prevention trials. We detected tumor-associated aberrant hypermethylation of the p16 gene in plasma and tissue DNA from 153 specimens using a modified semi-nested methylation-specific PCR (MSP) combining plastic microchip electrophoresis or slab gel electrophoresis, respectively. Specimens were from 79 lung cancer patients, 15 abdominal tumor patients, 30 positive controls and 30 negative controls. The results showed that the positive rate obtained by microchip electrophoresis was more than 26.6% higher and the same speciticity was kept when compared with slab gel electrophoresis. The microchip electrophoresis can rapidly and accurately analyze the PCR products of methylated DNA and obviously improve the positive rate of diagnosis of cancer patients when compared with gel electrophoresis. This method with the high assay sensitivity might be used for detection of methylation of p16 gene and even to facilitate early diagnosis of cancer patients. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
To investigate women’s help seeking behavior (HSB) following self discovery of a breast symptom and determine the associated influencing factors. A descriptive correlation design was used to ascertain the help seeking behavior (HSB) and the associated influencing factors of a sample of women (n = 449) with self discovered breast symptoms. The study was guided by the ‘Help Seeking Behaviour and Influencing Factors” conceptual framework (Facione et al., 2002; Meechan et al., 2003, 2002; Leventhal, Brissette and Leventhal, 2003 and O’Mahony and Hegarty, 2009b). Data was collected using a researcher developed multi-scale questionnaire package to ascertain women’s help seeking behavior on self discovery of a breast symptom and determine the factors most associated with HSB. Factors examined include: socio-demographics, knowledge and beliefs (regarding breast symptom; breast changes associated with breast cancer; use of alternative help seeking behaviours and presence or absence of a family history of breast cancer),emotional responses, social factors, health seeking habits and health service system utilization and help seeking behavior. A convenience sample (n = 449 was obtained by the researcher from amongst women attending the breast clinics of two large urban hospitals within the Republic of Ireland. All participants had self-discovered breast symptoms and no previous history of breast cancer. The study identified that while the majority of women (69.9%; n=314) sought help within one month, 30.1% (n=135) delayed help seeking for more than one month following self discovery of their breast symptom. The factors most significantly associated with HSB were the presenting symptom of ‘nipple indrawn/changes’ (p = 0.005), ‘ignoring the symptom and hoping it would go away’ (p < 0.001), the emotional response of being ‘afraid@ on symptom discovery (p = 0.005) and the perception/belief in longer symptom duration (p = 0.023). It was found that women who presented with an indrawn/changed nipple were more likely to delay (OR = 4.81) as were women who ‘ignored the symptoms and hoped it would go away’ (OR = 10.717). Additionally, the longer women perceived that their symptom would last, they more likely they were to delay (OR = 1.18). Conversely, being afraid following symptom discovery was associated with less delay (OR = 0.37; p=0.005). This study provides further insight into the HSB of women who self discovered breast symptoms. It highlights the complexity of the help seeking process, indicating that is not a linear event but is influenced by multiple factors which can have a significant impact on the outcomes in terms of whether women delay or seek help promptly. The study further demonstrates that delayed HSB persists amongst women with self discovered breast symptoms. This has important implications for continued emphasis on the promotion of breast awareness, prompt help seeking for self discovered breast symptoms and early detection and treatment of breast cancer, amongst women of all ages.
Resumo:
Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).
Resumo:
Quantitative optical spectroscopy has the potential to provide an effective low cost, and portable solution for cervical pre-cancer screening in resource-limited communities. However, clinical studies to validate the use of this technology in resource-limited settings require low power consumption and good quality control that is minimally influenced by the operator or variable environmental conditions in the field. The goal of this study was to evaluate the effects of two sources of potential error: calibration and pressure on the extraction of absorption and scattering properties of normal cervical tissues in a resource-limited setting in Leogane, Haiti. Our results show that self-calibrated measurements improved scattering measurements through real-time correction of system drift, in addition to minimizing the time required for post-calibration. Variations in pressure (tested without the potential confounding effects of calibration error) caused local changes in vasculature and scatterer density that significantly impacted the tissue absorption and scattering properties Future spectroscopic systems intended for clinical use, particularly where operator training is not viable and environmental conditions unpredictable, should incorporate a real-time self-calibration channel and collect diffuse reflectance spectra at a consistent pressure to maximize data integrity.
Resumo:
OBJECTIVES: To compare the predictive performance and potential clinical usefulness of risk calculators of the European Randomized Study of Screening for Prostate Cancer (ERSPC RC) with and without information on prostate volume. METHODS: We studied 6 cohorts (5 European and 1 US) with a total of 15,300 men, all biopsied and with pre-biopsy TRUS measurements of prostate volume. Volume was categorized into 3 categories (25, 40, and 60 cc), to reflect use of digital rectal examination (DRE) for volume assessment. Risks of prostate cancer were calculated according to a ERSPC DRE-based RC (including PSA, DRE, prior biopsy, and prostate volume) and a PSA + DRE model (including PSA, DRE, and prior biopsy). Missing data on prostate volume were completed by single imputation. Risk predictions were evaluated with respect to calibration (graphically), discrimination (AUC curve), and clinical usefulness (net benefit, graphically assessed in decision curves). RESULTS: The AUCs of the ERSPC DRE-based RC ranged from 0.61 to 0.77 and were substantially larger than the AUCs of a model based on only PSA + DRE (ranging from 0.56 to 0.72) in each of the 6 cohorts. The ERSPC DRE-based RC provided net benefit over performing a prostate biopsy on the basis of PSA and DRE outcome in five of the six cohorts. CONCLUSIONS: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider multiple factors, including an estimate of prostate volume.
Resumo:
BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated that promote development and improve prognosis. Research on autism spectrum disorder (ASD) suggests behavioral markers can be observed late in the first year of life. Many of these studies involved extensive frame-by-frame video observation and analysis of a child's natural behavior. Although non-intrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are impractical for clinical and large population research purposes. Diagnostic measures for ASD are available for infants but are only accurate when used by specialists experienced in early diagnosis. This work is a first milestone in a long-term multidisciplinary project that aims at helping clinicians and general practitioners accomplish this early detection/measurement task automatically. We focus on providing computer vision tools to measure and identify ASD behavioral markers based on components of the Autism Observation Scale for Infants (AOSI). In particular, we develop algorithms to measure three critical AOSI activities that assess visual attention. We augment these AOSI activities with an additional test that analyzes asymmetrical patterns in unsupported gait. The first set of algorithms involves assessing head motion by tracking facial features, while the gait analysis relies on joint foreground segmentation and 2D body pose estimation in video. We show results that provide insightful knowledge to augment the clinician's behavioral observations obtained from real in-clinic assessments.
Resumo:
Our long-term goal is the detection and characterization of vulnerable plaque in the coronary arteries of the heart using intravascular ultrasound (IVUS) catheters. Vulnerable plaque, characterized by a thin fibrous cap and a soft, lipid-rich necrotic core is a precursor to heart attack and stroke. Early detection of such plaques may potentially alter the course of treatment of the patient to prevent ischemic events. We have previously described the characterization of carotid plaques using external linear arrays operating at 9 MHz. In addition, we previously modified circular array IVUS catheters by short-circuiting several neighboring elements to produce fixed beamwidths for intravascular hyperthermia applications. In this paper, we modified Volcano Visions 8.2 French, 9 MHz catheters and Volcano Platinum 3.5 French, 20 MHz catheters by short-circuiting portions of the array for acoustic radiation force impulse imaging (ARFI) applications. The catheters had an effective transmit aperture size of 2 mm and 1.5 mm, respectively. The catheters were connected to a Verasonics scanner and driven with pushing pulses of 180 V p-p to acquire ARFI data from a soft gel phantom with a Young's modulus of 2.9 kPa. The dynamic response of the tissue-mimicking material demonstrates a typical ARFI motion of 1 to 2 microns as the gel phantom displaces away and recovers back to its normal position. The hardware modifications applied to our IVUS catheters mimic potential beamforming modifications that could be implemented on IVUS scanners. Our results demonstrate that the generation of radiation force from IVUS catheters and the development of intravascular ARFI may be feasible.
Resumo:
BACKGROUND: Automated reporting of estimated glomerular filtration rate (eGFR) is a recent advance in laboratory information technology (IT) that generates a measure of kidney function with chemistry laboratory results to aid early detection of chronic kidney disease (CKD). Because accurate diagnosis of CKD is critical to optimal medical decision-making, several clinical practice guidelines have recommended the use of automated eGFR reporting. Since its introduction, automated eGFR reporting has not been uniformly implemented by U. S. laboratories despite the growing prevalence of CKD. CKD is highly prevalent within the Veterans Health Administration (VHA), and implementation of automated eGFR reporting within this integrated healthcare system has the potential to improve care. In July 2004, the VHA adopted automated eGFR reporting through a system-wide mandate for software implementation by individual VHA laboratories. This study examines the timing of software implementation by individual VHA laboratories and factors associated with implementation. METHODS: We performed a retrospective observational study of laboratories in VHA facilities from July 2004 to September 2009. Using laboratory data, we identified the status of implementation of automated eGFR reporting for each facility and the time to actual implementation from the date the VHA adopted its policy for automated eGFR reporting. Using survey and administrative data, we assessed facility organizational characteristics associated with implementation of automated eGFR reporting via bivariate analyses. RESULTS: Of 104 VHA laboratories, 88% implemented automated eGFR reporting in existing laboratory IT systems by the end of the study period. Time to initial implementation ranged from 0.2 to 4.0 years with a median of 1.8 years. All VHA facilities with on-site dialysis units implemented the eGFR software (52%, p<0.001). Other organizational characteristics were not statistically significant. CONCLUSIONS: The VHA did not have uniform implementation of automated eGFR reporting across its facilities. Facility-level organizational characteristics were not associated with implementation, and this suggests that decisions for implementation of this software are not related to facility-level quality improvement measures. Additional studies on implementation of laboratory IT, such as automated eGFR reporting, could identify factors that are related to more timely implementation and lead to better healthcare delivery.
Resumo:
The oceans and coastal seas provide mankind with many benefits including food for around a third of the global population, the air that we breathe and our climate system which enables habitation of much of the planet. However, the converse is that generation of natural events (such as hurricanes, severe storms and tsunamis) can have devastating impacts on coastal populations, while pollution of the seas by pathogens and toxic waste can cause illness and death in humans and animals. Harmful effects from biogenic toxins produced by algal blooms (HABs) and from the pathogens associated with microbial pollution are also a health hazard in seafood and from direct contact with water. The overall global burden of human disease caused by sewage pollution of coastal waters has been estimated at 4 million lost person-years annually. Finally, the impacts of all of these issues will be exacerbated by climate change. A holistic systems approach is needed. It must consider whole ecosystems, and their sustainability, such as integrated coastal zone management, is necessary to address the highly interconnected scientific challenges of increased human population pressure, pollution and over-exploitation of food (and other) resources as drivers of adverse ecological, social and economic impacts. There is also an urgent and critical requirement for effective and integrated public health solutions to be developed through the formulation of politically and environmentally meaningful policies. The research community required to address "Oceans & Human Health" in Europe is currently very fragmented, and recognition by policy makers of some of the problems, outlined in the list of challenges above, is limited. Nevertheless, relevant key policy issues for governments worldwide include the reduction of the burden of disease (including the early detection of emerging pathogens and other threats) and improving the quality of the global environment. Failure to effectively address these issues will impact adversely on efforts to alleviate poverty, sustain the availability of environmental goods and services and improve health and social and economic stability; and thus, will impinge on many policy decisions, both nationally and internationally. Knowledge exchange (KE) will be a key element of any ensuing research. KE will facilitate the integration of biological, medical, epidemiological, social and economic disciplines, as well as the emergence of synergies between seemingly unconnected areas of science and socio-economic issues, and will help to leverage knowledge transfer across the European Union (EU) and beyond. An integrated interdisciplinary systems approach is an effective way to bring together the appropriate groups of scientists, social scientists, economists, industry and other stakeholders with the policy formulators in order to address the complexities of interfacial problems in the area of environment and human health. The Marine Board of the European Science Foundation Working Group on "Oceans and Human Health" has been charged with developing a position paper on this topic with a view to identifying the scientific, social and economic challenges and making recommendations to the EU on policy-relevant research and development activities in this arena. This paper includes the background to health-related issues linked to the coastal environment and highlights the main arguments for an ecosystem-based whole systems approach.
Resumo:
La termometría es una técnica no invasiva que permite cuantificar los cambios en la temperatura cutánea y evaluarla de forma cuantitativa. El aumento significativo de la temperatura puede indicar la existencia de patología. Se ha demostrado que la actividad muscular induce procesos de transferencia de calor entre los músculos y las capas superficiales de tejido. En este estudio queremos cuantificar los cambios de temperatura que se producen en los músculos del pie y miembro inferior tras una carrera de 30 km, para ello hemos utilizado una cámara termográfica de alta resolución. Contamos con la colaboración voluntaria de 32 sujetos sanos a los que procedimos a tomar fotografías de la planta del pie, parte anterior de la pierna, parte posterior de la pierna, parte anterior del muslo y parte posterior del muslo en dos etapas, primero antes de la carrera y segunda toma después de la carrera de 30 km, de esta manera pudimos valorar si había o no variación de temperatura en las zonas seleccionadas. Tras el análisis de los datos obtenidos encontramos significativas variaciones térmicas en Talón, cabeza primer metatarsiano, cabeza segundo metatarsiano, cabeza tercer metatarsiano, cabeza cuarto metatarsiano, cabeza quinto metatarsiano, apófisis estiloides quinto metatarsiano, arco longitudinal interno, maléolo interno, maléolo externo, peroneo lateral largo, vasto interno, vasto externo, recto femoral, tensor de la fascia lata, inserción cuádriceps, gemelo interno, tendón de Aquiles y Biceps femoral.
Resumo:
Purpose: Age related macular degeneration (AMD) is a common cause of severe vision loss. Identification of genes involved in AMD will facilitate early detection and ultimately help to identify pathways for treatment for this disorder. The A16,263G mutation in the HEMICENTIN-1 gene produces a non-conservative substitution of arginine for glutamine at codon 5345 which has been implicated in familial AMD. The aim of this study is to develop a rapid diagnostic assay for the detection of this mutation and to evaluate its frequency in a sample of AMD patients. Methods: A primer probe set was designed from exon 104 of the HEMICENTIN-1 gene to differentiate between mutant and wild type alleles. A region spanning the mutation was amplified by PCR using a LightCycler (Roche Diagnostic). The mutation was then detected by melt curve analysis of the hybrid formed between the PCR product and a specific fluorescent probe. The frequency of the mutation within the Northern Ireland population was evaluated by assaying 508 affected AMD patients, 25 possibly affected and 163 controls. Results: This assay clearly discriminates between the A16,263G mutant and wild type HEMICENTIN-1 alleles. The wild type sequence has a single base mismatch with the probe which decreases the stability of the hybrid, resulting in a lower TM (TM=51.27 °C) than that observed for the perfectly matched mutant allele (TM=59.9 °C). The mutant allele was detected in only one of the 696 subjects, an affected AMD patient. Conclusions: We describe a rapid assay for the genotyping of the Gln5345Arg mutation using real-time fluorescence PCR to facilitate rapid processing of samples through combined amplification and detection steps. These characteristics are suitable for a clinical setting where high throughput diagnostic procedures are required. The frequency of this mutation within the Northern Ireland population has been estimated at 0.2%, concurring with previous findings that this mutation is a rare variant associated with AMD. A rapid diagnostic assay will facilitate a reliable and convenient evaluation of the frequency of the Gln5345Arg mutation and its association with AMD within other populations.