947 resultados para dynamic parameters identification
Resumo:
The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.
Resumo:
Target of this book is to propose an approach for modelling drivetrain dynamics in order to design further a vibration control system of a hybrid bus. In this thesis two approaches are examined and compared. First model is obtained by theoretical means: drivetrain is represented as a system of rotating masses, which motion is described with differential equations. Second model is obtained using system identification method: mathematical description of the dynamic behavior of a system is formed based on measured input (torque) and output (speed) data. Then two models are compared and an optimal approach is suggested.
Resumo:
Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1), 5 + 10 (Glu-D1), c (Glu-A3), and b (Glu-B3), with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.
Resumo:
Tämä diplomityö arvioi hitsauksen laadunhallintaohjelmistomarkkinoiden kilpailijoita. Kilpailukenttä on uusi ja ei ole tarkkaa tietoa siitä minkälaisia kilpailijoita on markkinoilla. Hitsauksen laadunhallintaohjelmisto auttaa yrityksiä takaamaan korkean laadun. Ohjelmisto takaa korkean laadun varmistamalla, että hitsaaja on pätevä, hän noudattaa hitsausohjeita ja annettuja parametreja. Sen lisäksi ohjelmisto kerää kaiken tiedon hitsausprosessista ja luo siitä vaadittavat dokumentit. Diplomityön teoriaosuus muodostuu kirjallisuuskatsauksesta ratkaisuliike-toimintaan, kilpailija-analyysin ja kilpailuvoimien teoriaan sekä hitsauksen laadunhallintaan. Työn empiriaosuus on laadullinen tutkimus, jossa tutkitaan kilpailevia hitsauksen laadunhallintaohjelmistoja ja haastatellaan ohjelmistojen käyttäjiä. Diplomityön tuloksena saadaan uusi kilpailija-analyysimalli hitsauksen laadunhallintaohjelmistoille. Mallin avulla voidaan arvostella ohjelmistot niiden tarjoamien primääri- ja sekundääriominaisuuksien perusteella. Toiseksi tässä diplomityössä analysoidaan nykyinen kilpailijatilanne hyödyntämällä juuri kehitettyä kilpailija-analyysimallia.
Resumo:
Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
In this paper, we use identification-robust methods to assess the empirical adequacy of a New Keynesian Phillips Curve (NKPC) equation. We focus on the Gali and Gertler’s (1999) specification, on both U.S. and Canadian data. Two variants of the model are studied: one based on a rationalexpectations assumption, and a modification to the latter which consists in using survey data on inflation expectations. The results based on these two specifications exhibit sharp differences concerning: (i) identification difficulties, (ii) backward-looking behavior, and (ii) the frequency of price adjustments. Overall, we find that there is some support for the hybrid NKPC for the U.S., whereas the model is not suited to Canada. Our findings underscore the need for employing identificationrobust inference methods in the estimation of expectations-based dynamic macroeconomic relations.
Resumo:
La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.
Resumo:
Social interactions arguably provide a rationale for several important phenomena, from smoking and other risky behavior in teens to e.g., peer effects in school performance. We study social interactions in dynamic economies. For these economies, we provide existence (Markov Perfect Equilibrium in pure strategies), ergodicity, and welfare results. Also, we characterize equilibria in terms of agents' policy function, spatial equilibrium correlations and social multiplier effects, depending on the nature of interactions. Most importantly, we study formally the issue of the identification of social interactions, with special emphasis on the restrictions imposed by dynamic equilibrium conditions.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
Un système, décrit avec un grand nombre d'éléments fortement interdépendants, est complexe, difficile à comprendre et à maintenir. Ainsi, une application orientée objet est souvent complexe, car elle contient des centaines de classes avec de nombreuses dépendances plus ou moins explicites. Une même application, utilisant le paradigme composant, contiendrait un plus petit nombre d'éléments, faiblement couplés entre eux et avec des interdépendances clairement définies. Ceci est dû au fait que le paradigme composant fournit une bonne représentation de haut niveau des systèmes complexes. Ainsi, ce paradigme peut être utilisé comme "espace de projection" des systèmes orientés objets. Une telle projection peut faciliter l'étape de compréhension d'un système, un pré-requis nécessaire avant toute activité de maintenance et/ou d'évolution. De plus, il est possible d'utiliser cette représentation, comme un modèle pour effectuer une restructuration complète d'une application orientée objets opérationnelle vers une application équivalente à base de composants tout aussi opérationnelle. Ainsi, La nouvelle application bénéficiant ainsi, de toutes les bonnes propriétés associées au paradigme composants. L'objectif de ma thèse est de proposer une méthode semi-automatique pour identifier une architecture à base de composants dans une application orientée objets. Cette architecture doit, non seulement aider à la compréhension de l'application originale, mais aussi simplifier la projection de cette dernière dans un modèle concret de composant. L'identification d'une architecture à base de composants est réalisée en trois grandes étapes: i) obtention des données nécessaires au processus d'identification. Elles correspondent aux dépendances entre les classes et sont obtenues avec une analyse dynamique de l'application cible. ii) identification des composants. Trois méthodes ont été explorées. La première utilise un treillis de Galois, la seconde deux méta-heuristiques et la dernière une méta-heuristique multi-objective. iii) identification de l'architecture à base de composants de l'application cible. Cela est fait en identifiant les interfaces requises et fournis pour chaque composant. Afin de valider ce processus d'identification, ainsi que les différents choix faits durant son développement, j'ai réalisé différentes études de cas. Enfin, je montre la faisabilité de la projection de l'architecture à base de composants identifiée vers un modèle concret de composants.
Resumo:
Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli. Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité). Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée.
Resumo:
Atmospheric Boundary layer (ABL) is the layer just above the earth surface and is influenced by the surface forcing within a short period of an hour or less. In this thesis, characteristics of the boundary layer over ocean, coastal and inland areas of the atmosphere, especially over the monsoon regime are thoroughly studied. The study of the coastal zone is important due to its high vulnerability mainly due to sea breeze circulation and associated changes in the atmospheric boundary layer. The major scientific problems addressed in this thesis are diurnal and seasonal variation of coastal meteorological properties, the characteristic difference in the ABL during active and weak monsoons, features of ABL over marine environment and the variation of the boundary layer structure over an inland station. The thesis describes the various features in the ABL associated with the active and weak monsoons and, the surface boundary layer properties associated with the active and weak epochs. The study provides knowledge on MABL and can be used as the estimated values of boundary layer parameters over the marine atmosphere and to know the values and variabilities of the ABL parameters such as surface wind, surface friction, drag coefficient, wind stress and wind stress curl.
Resumo:
The present work is an attempt to probe the elastic properties in some dielectric ceramics, by using ultrasonic pulse echo overlap technique. The base Ba6-xSm8+2xTi18O54 and Ca5Nb2TiO12 are very important dielectrics ceramics used for microwave communication as well as for substrate materials. Ultrasonic is one of the most widely used and powerful techniques to measure elastic properties of solids. The ultrasonic technique is nondestructive in nature and the measurements are relatively straightforward to perform. One unique advantantage of the ultrasonic technique is that both static and dynamic properties can be measured simultaneously. The velocity and attenuation coefficients of the ultrasonic waves propagating through a medium are related to the microscopic structure of the material and they provide valuable information about the structural changes in the system. Among the various ultrasonic techniques, the pulse echo overlap method is the most accurate and precise one. In the present case the decreased elastic properties of Cas-XMg,Nb2TiO12 and Cas-,ZnNb2TiO12 ceramics can be attributed to their mixture phases beyond x = 1. Moreover, the abrupt change in elastic properties observed for x >1 can also be correlated to the structural transformation of the materials from their phase pure form to mixture phases for higher extent of substitution of the concerned material . Ca4(ANb2Ti)012 (A = Mg, Zn) is the strongest compound with the maximum values for elastic properties . This could be due to the possible substitution of Mg/Zn ions with lesser radius [25] than Ca2+ in perovskite B-site of Ca(Cali4Nb2i4Tili4) O3 material to contribute more ordering and symmetry to the system [20]. All other compositions (x > 1) contain mixed-phases and for such mixed-phase samples, the mechanical properties are difficult to explain.