969 resultados para dynamic adverse selection
Resumo:
Micropartículas produzidas a partir de polímeros sintéticos têm sido amplamente utilizadas na área farmacêutica para encapsulação de princípios ativos. Essas micropartículas apresentam as vantagens de proteção do princípio ativo, mucoadesão e gastrorresistência, melhor biodisponibilidade e maior adesão do paciente ao tratamento. Além disso, utiliza menores quantidade de princípio ativo para obtenção do efeito terapêutico proporcionando diminuição dos efeitos adversos locais, sistêmicos e menor toxidade. Os polímeros sintéticos empregados na produção das micropartículas são classificados biodegradáveis ou não biodegradáveis, sendo os biodegradáveis mais utilizados por não necessitam ser removidos cirurgicamente após o término de sua ação. A produção das micropartículas poliméricas sintéticas para encapsulação tanto de ativos hidrofílicos quanto hidrofóbicos pode ser emulsificação por extração e/ou evaporação do solvente; coacervação; métodos mecânicos e estão revisados neste artigo evidenciando as vantagens, desvantagens e viabilidade de cada metodologia. A escolha da metodologia e do polímero sintético a serem empregados na produção desse sistema dependem da aplicação terapêutica requerida, bem como a simplicidade, reprodutibilidade e factibilidade do aumento de escala da produção.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
We estimated the sensitivity, i.e., the proportion of all cases of adverse events following immunization (AEFIs) reported to the Brazilian passive surveillance for adverse events following immunization (PSAEFI) with the diphtheria-tetanus-whole-cell pertussis-Haemophilus influenzae type b (DTwP-Hib) vaccine, as well as investigating factors associated with AEFIs reporting. During 2003–2004, 8303 AEFIs associated with DTwP-Hib were reported; hypotonic-hyporesponsive episodes (HHEs), fever and convulsions being the most common. Cure without sequel was achieved in 98.4 per cent of the cases. The mean sensitivity of the PSAEFI was 22.3 per cent and 31.6 per cent, respectively, for HHE and convulsions, varying widely among states. Reporting rates correlated positively with the Human Development Index and coverage of adequate prenatal care, correlating negatively with infant mortality rates. Quality of life indicators and the degree of organization of health services are associated with greater PSAEFI sensitivity. In addition to consistently describing the principal AEFIs, PSAEFI showed the DTwP/Hib vaccine to be safe and allayed public fears related to its use
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.
Resumo:
Grapholita molesta (Lepidoptera: Tortricidae) is one of the main pests of peach trees in Brazil, causing fruit losses of 3-5%. Among possible biological control agents, Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) has been found in peach orchards. Our objectives were to study the rearing of T pretiosum in eggs of G. molesta and Anagasta kuehniella (Lepidoptera: Pyralidae), and select lineages of this parasitoid that have the potential to control G. molesta. Selection of best lineages was made from 5 populations of T pretiosum collected from organically-cultivated peach orchards. The study was done under controlled temperature (25 +/- 2 degrees C), relative humidity (70 +/- 10%) and 14:10 h (light:dark) photoperiod conditions. Grapholita molesta eggs were found to be adequate hosts for the development of T pretiosum, and the parameters for number of parasitized eggs, percent parasitized eggs, and sex ratio were similar to those for A. kuehniella eggs. The highest rate of parasitism of G. molesta eggs occurred in eggs with up to 48 h of embryonic development. Among the lineages of T pretiosum that were collected, HO8, PO8, PEL, and L3M showed the best biological performance and are therefore indicated for semi-field and field studies for biological control of oriental fruit moth.
Resumo:
Background: The criteria and timing for nerve surgery in infants with obstetric brachial plexopathy remain controversial. Our aim was to develop a new method for early prognostic assessment to assist this decision process. Methods: Fifty-four patients with unilateral obstetric brachial plexopathy who were ten to sixty days old underwent bilateral motor-nerve-conduction studies of the axillary, musculocutaneous, proximal radial, distal radial, median, and ulnar nerves. The ratio between the amplitude of the compound muscle action potential of the affected limb and that of the healthy side was called the axonal viability index. The patients were followed and classified in three groups according to the clinical outcome. We analyzed the receiver operating characteristic curve of each index to define the best cutoff point to detect patients with a poor recovery. Results: The best cutoff points on the axonal viability index for each nerve (and its sensitivity and specificity) were <10% (88% and 89%, respectively) for the axillary nerve, 0% (88% and 73%) for the musculocutaneous nerve, <20% (82% and 97%) for the proximal radial nerve, <50% (82% and 97%) for the distal radial nerve, and <50% (59% and 97%) for the ulnar nerve. The indices from the proximal radial, distal radial, and ulnar nerves had better specificities compared with the most frequently used clinical criterion: absence of biceps function at three months of age. Conclusions: The axonal viability index yields an earlier and more specific prognostic estimation of obstetric brachial plexopathy than does the clinical criterion of biceps function, and we believe it may be useful in determining surgical indications in these patients.
Resumo:
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.
Resumo:
Hardy-Weinberg Equilibrium (HWE) is an important genetic property that populations should have whenever they are not observing adverse situations as complete lack of panmixia, excess of mutations, excess of selection pressure, etc. HWE for decades has been evaluated; both frequentist and Bayesian methods are in use today. While historically the HWE formula was developed to examine the transmission of alleles in a population from one generation to the next, use of HWE concepts has expanded in human diseases studies to detect genotyping error and disease susceptibility (association); Ryckman and Williams (2008). Most analyses focus on trying to answer the question of whether a population is in HWE. They do not try to quantify how far from the equilibrium the population is. In this paper, we propose the use of a simple disequilibrium coefficient to a locus with two alleles. Based on the posterior density of this disequilibrium coefficient, we show how one can conduct a Bayesian analysis to verify how far from HWE a population is. There are other coefficients introduced in the literature and the advantage of the one introduced in this paper is the fact that, just like the standard correlation coefficients, its range is bounded and it is symmetric around zero (equilibrium) when comparing the positive and the negative values. To test the hypothesis of equilibrium, we use a simple Bayesian significance test, the Full Bayesian Significance Test (FBST); see Pereira, Stern andWechsler (2008) for a complete review. The disequilibrium coefficient proposed provides an easy and efficient way to make the analyses, especially if one uses Bayesian statistics. A routine in R programs (R Development Core Team, 2009) that implements the calculations is provided for the readers.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
Background: Considering the broad variation in the expression of housekeeping genes among tissues and experimental situations, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. For glioblastoma, the most common type of tumor in the central nervous system, there was no previous report regarding this issue. Results: Here we show that amongst seven frequently used housekeeping genes TBP and HPRT1 are adequate references for glioblastoma gene expression analysis. Evaluation of the expression levels of 12 target genes utilizing different endogenous controls revealed that the normalization method applied might introduce errors in the estimation of relative quantities. Genes presenting expression levels which do not significantly differ between tumor and normal tissues can be considered either increased or decreased if unsuitable reference genes are applied. Most importantly, genes showing significant differences in expression levels between tumor and normal tissues can be missed. We also demonstrated that the Holliday Junction Recognizing Protein, a novel DNA repair protein over expressed in lung cancer, is extremely over-expressed in glioblastoma, with a median change of about 134 fold. Conclusion: Altogether, our data show the relevance of previous validation of candidate control genes for each experimental model and indicate TBP plus HPRT1 as suitable references for studies on glioblastoma gene expression.
Resumo:
A variety of factors influence prey selection by predators. Because Barn Owls (Tyto alba) and Burrowing Owls (Athene cunicularia) differ in size and foraging tactics, we expected differential predation on small mammal prey. We hypothesized that the Barn Owl, all active predator, would prey on smaller and younger individuals than the Burrowing Owl, a sit-and-wait predator. We used pellet analyses to evaluate selection of small mammals by the two owls in relation to prey), species, age, and size at the Ecological Station of Itirapina, state of Sao Paulo, in southeastern Brazil. Small mammals constituted most of the prey individuals and biomass in the diet of Barn Owls. Although Burrowing Owls consumed a wider range of taxa, small mammals represented one-third of all biomass consumed. With respect. to small mammals, Barn Owls foraged selectively relative to prey species, size, and age. Burrowing Owls foraged opportunistically relative to prey species, but selectively relative to prey size and age. Barn Owls selected smaller and younger (juvenile and subadult) individuals of the delicate vesper mouse (Calomys tener) and Burrowing Owls preyed more oil larger and older (subadult only) individuals. morphology and behavior of both prey and predators may explain this differential predation. Our data suggest that the active predator feeds oil smaller and younger prey, and the sit-and-wait predator took relatively larger and older prey.
Resumo:
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a ""flipflop'' phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.