977 resultados para drug sensitivity
Resumo:
Metformin may be an effective therapeutic option for insulin-resistant (I-R) horses/ponies because, in humans, it reportedly enhances insulin sensitivity (SI) of peripheral tissues without stimulating insulin secretion. To determine the effect of metformin on insulin and glucose dynamics in I-R ponies, six ponies were studied in a cross-over design by Minimal Model analysis of a frequently-sampled intravenous glucose tolerance test (FSIGT). Metformin was administered at 15. mg/kg bodyweight (BW), orally, twice-daily, for 21. days to the metformin-treated group. The control group received a placebo. A FSIGT was conducted before and after treatment. The Minimal Model of glucose and insulin dynamics rendered indices describing SI, glucose effectiveness (Sg), acute insulin response to glucose (AIRg) and the disposition index (DI). The body condition score (BCS), BW and cresty neck score (CNS) were also assessed. There was no significant change in SI, Sg, AIRg, DI, BW, BCS or CNS in response to metformin, or over time in the control group. There were no measurable benefits of metformin on SI, consistent with recent work showing that the bioavailability of metformin in horses is poor, and chronic dosing may not achieve therapeutic blood concentrations. Alternatively, metformin may only be effective in obese ponies losing weight or with hyperglycaemia.
Resumo:
We present a formalism for the analysis of sensitivity of nuclear magnetic resonance pulse sequences to variations of pulse sequence parameters, such as radiofrequency pulses, gradient pulses or evolution delays. The formalism enables the calculation of compact, analytic expressions for the derivatives of the density matrix and the observed signal with respect to the parameters varied. The analysis is based on two constructs computed in the course of modified density-matrix simulations: the error interrogation operators and error commutators. The approach presented is consequently named the Error Commutator Formalism (ECF). It is used to evaluate the sensitivity of the density matrix to parameter variation based on the simulations carried out for the ideal parameters, obviating the need for finite-difference calculations of signal errors. The ECF analysis therefore carries a computational cost comparable to a single density-matrix or product-operator simulation. Its application is illustrated using a number of examples from basic NMR spectroscopy. We show that the strength of the ECF is its ability to provide analytic insights into the propagation of errors through pulse sequences and the behaviour of signal errors under phase cycling. Furthermore, the approach is algorithmic and easily amenable to implementation in the form of a programming code. It is envisaged that it could be incorporated into standard NMR product-operator simulation packages.
Resumo:
In the context of cultural and/or differential ‘normalisation’ of certain forms of drug use, this article describes two case-studies of heavy recreational drug users. The daily lives of these users blur the line between the legal and the illegal; their drug trading is generally as a consumer and ‘friend of a friend’ small dealer in the low-level market. In the first case, problems with management of employment, time and financial budgeting are described; in the second case, such management is accomplished. Discussion refers to: differences between the two in relation to resources and vulnerability to risks, and to leisure/pleasure cultures of hedonism. The research agenda should pay more attention to users who seek to maintain a legitimate lifestyle but who develop problems managing work and their drug-related leisure. Understanding the consumer demand and dealing activity of such users is important in trying to develop a fuller understanding of drug markets.
Resumo:
Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11–19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours.