952 resultados para disease biology
Resumo:
The medial arterial supply to 68 of the 72 coxofemoral joints of 36 medium to large breed dogs was examined ultrasonographically. The medial circumflex femoral artery and three branches were identified; the artery and its transverse branch were identified in all 68 joints, and the deep branch was identified in 61 joints, and the ascending branch was identified in 63. However, the acetabular and obturator branches were not identified. The pulsatility index, the mean velocity and the peak systolic velocity of the medial circumflex femoral artery were determined and associated with a radiographic score of degenerative coxofemoral joint disease and a lath distraction index (LDI). In joints with a LDI greater than 0.35, the pulsatility index was significantly lower (P=0.023) and its mean velocity was higher (P=0.005). However, no significant associations were observed in individual dogs when the measurements in both joints were taken into account.
Resumo:
BACKGROUND In Switzerland, the heptavalent (PCV7) and 13-valent pneumococcal conjugate vaccine (PCV13) were recommended for all infants aged <2 years in 2007 and 2011, respectively. Due to herd effects, a protective impact on the invasive pneumococcal disease (IPD) rates in adults had been expected. METHODS Within this study, data from the nationwide mandatory surveillance was analyzed for all adult patients ≥16 years with IPD of known serotype/serogroup during 2003-2012. Trend (for IPD cases from 2003 to 2012) and logistic regression analyses (2007-2010) were performed to identify changes in serotype distribution and to identify the association of serotypes with age, clinical manifestations, comorbidities and case fatality, respectively. FINDINGS The proportion of PCV7 serotypes among all IPD cases (n=7678) significantly declined in adults from 44.7% (2003) before to 16.7% (2012) after the recommendation of PCV7 (P<0.001). In contrast, the proportion of non-PCV7 serogroup/serotypes increased for non-PCV13 but also PCV13 serotypes (not included in PCV7) at the same time. Serotype distribution varied significantly across ages, clinical manifestations and comorbidities. Serotype was furthermore associated with case fatality (P=0.001). In a multivariable logistic regression model, analyzing single serotypes showed that case-fatality was increased for the serotypes 3 (P=0.008), 19A (P=0.03) and 19F (P=0.005), compared to serotype 1 and 7F. CONCLUSION There was a significant decline in PCV7 serotypes among adults with IPD in Switzerland after introduction of childhood vaccination with PCV7. Pneumococcal serotypes were associated with case fatality, age, clinical manifestation and comorbidities of IPD in adults. These results may prove useful for future vaccine recommendations for adults in Switzerland.
Resumo:
AIM This study assessed the mental health of parents of children with inflammatory bowel disease (IBD), compared their mental health with age-matched and gender-matched references and examined parental and child predictors for mental health problems. METHODS A total of 125 mothers and 106 fathers of 125 children with active and inactive IBD from the Swiss IBD multicentre cohort study were included. Parental mental health was assessed by the Symptom Checklist 27 and child behaviour problems by the Strengths and Difficulties Questionnaire. Child medical data were extracted from hospital records. RESULTS While the mothers reported lower mental health, the fathers' mental health was similar, or even better, than in age-matched and gender-matched community controls. In both parents, shorter time since the child's diagnosis was associated with poorer mental health. In addition, the presence of their own IBD diagnosis and child behaviour problems predicted maternal mental health problems. CONCLUSIONS Parents of children with IBD may need professional support when their child is diagnosed, to mitigate distress. This, in turn, may help the child to adjust better to IBD. Particular attention should be paid to mothers who have their own IBD diagnosis and whose children display behaviour problems.
Resumo:
Bovine besnoitiosis is caused by the largely unexplored apicomplexan parasite Besnoitia besnoiti. In cows, infection during pregnancy often results in abortion, and chronically infected bulls become infertile. Similar to other apicomplexans B. besnoiti has acquired a largely intracellular lifestyle, but its complete life cycle is still unknown, modes of transmission have not been entirely resolved and the definitive host has not been identified. Outbreaks of bovine besnoitiosis in cattle were described in the 1990s in Portugal and Spain, and later several cases were also detected in France. More cases have been reported recently in hitherto unaffected countries, including Italy, Germany, Switzerland, Hungary and Croatia. To date, there is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level. In addition, the lack of an appropriate small animal laboratory model, and wide gaps in our knowledge on the host-parasite interplay during the life cycle of this parasite, renders vaccine and drug development a cost- and labour-intensive undertaking.
Resumo:
An adult dog that lived in central British Columbia was examined because of a history of lethargy and vomiting. Histology, immunohistochemistry, and polymerase chain reaction (PCR) examination of a hepatic mass confirmed the presence of an alveolar hydatid cyst, the first description of Echinococcus multilocularis in British Columbia. We provide recommendations for case management and remind practitioners in endemic areas of western Canada that dogs can serve as definitive and, rarely, intermediate hosts for E. multilocularis.
Resumo:
Fibromuscular dysplasia (FMD) is a rare, nonatherosclerotic arterial disease for which the molecular basis is unknown. We comprehensively studied 47 subjects with FMD, including physical examination, spine magnetic resonance imaging, bone densitometry, and brain magnetic resonance angiography. Inflammatory biomarkers in plasma and transforming growth factor β (TGF-β) cytokines in patient-derived dermal fibroblasts were measured by ELISA. Arterial pathology other than medial fibrodysplasia with multifocal stenosis included cerebral aneurysm, found in 12.8% of subjects. Extra-arterial pathology included low bone density (P<0.001); early onset degenerative spine disease (95.7%); increased incidence of Chiari I malformation (6.4%) and dural ectasia (42.6%); and physical examination findings of a mild connective tissue dysplasia (95.7%). Screening for mutations causing known genetically mediated arteriopathies was unrevealing. We found elevated plasma TGF-β1 (P=0.009), TGF-β2 (P=0.004) and additional inflammatory markers, and increased TGF-β1 (P=0.0009) and TGF-β2 (P=0.0001) secretion in dermal fibroblast cell lines from subjects with FMD compared to age- and gender-matched controls. Detailed phenotyping of patients with FMD allowed us to demonstrate that FMD is a systemic disease with alterations in common with the spectrum of genetic syndromes that involve altered TGF-β signaling and offers TGF-β as a marker of FMD.
Resumo:
NaV-b subunits associate with the NaV-a or pore-forming subunit of the voltage-dependent sodium channel and play critical roles in channel expression, voltage dependence of the channel gating, cell adhesion, signal transduction, and channel pharmacology. Five NaV-b subunits have been identified in humans, all of them implicated in many primary arrhythmia syndromes that cause sudden death or neurologic disorders, including long QT syndrome, Brugada syndrome, cardiac conduction disorders, idiopathic ventricular fibrillation, epilepsy, neurodegenerative diseases, and neuropsychiatric disorders.
Resumo:
Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.
Resumo:
Inherited neurodegenerative disorders are debilitating diseases that occur across different species. We have performed clinical, pathological and genetic studies to characterize a novel canine neurodegenerative disease present in the Lagotto Romagnolo dog breed. Affected dogs suffer from progressive cerebellar ataxia, sometimes accompanied by episodic nystagmus and behavioral changes. Histological examination revealed unique pathological changes, including profound neuronal cytoplasmic vacuolization in the nervous system, as well as spheroid formation and cytoplasmic aggregation of vacuoles in secretory epithelial tissues and mesenchymal cells. Genetic analyses uncovered a missense change, c.1288G>A; p.A430T, in the autophagy-related ATG4D gene on canine chromosome 20 with a highly significant disease association (p = 3.8 x 10-136) in a cohort of more than 2300 Lagotto Romagnolo dogs. ATG4D encodes a poorly characterized cysteine protease belonging to the macroautophagy pathway. Accordingly, our histological analyses indicated altered autophagic flux in affected tissues. The knockdown of the zebrafish homologue atg4da resulted in a widespread developmental disturbance and neurodegeneration in the central nervous system. Our study describes a previously unknown canine neurological disease with particular pathological features and implicates the ATG4D protein as an important autophagy mediator in neuronal homeostasis. The canine phenotype serves as a model to delineate the disease-causing pathological mechanism(s) and ATG4D function, and can also be used to explore treatment options. Furthermore, our results reveal a novel candidate gene for human neurodegeneration and enable the development of a genetic test for veterinary diagnostic and breeding purposes.
Resumo:
Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.
Resumo:
Experimentally renal tissue hypoxia appears to play an important role in the pathogenesis of chronic kidney disease (CKD) and arterial hypertension (AHT). In this study we measured renal tissue oxygenation and its determinants in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) under standardized hydration conditions. Four coronal slices were selected, and a multi gradient echo sequence was used to acquire T2* weighted images. The mean cortical and medullary R2* values ( = 1/T2*) were calculated before and after administration of IV furosemide, a low R2* indicating a high tissue oxygenation. We studied 195 subjects (95 CKD, 58 treated AHT, and 42 healthy controls). Mean cortical R2 and medullary R2* were not significantly different between the groups at baseline. In stimulated conditions (furosemide injection), the decrease in R2* was significantly blunted in patients with CKD and AHT. In multivariate linear regression analyses, neither cortical nor medullary R2* were associated with eGFR or blood pressure, but cortical R2* correlated positively with male gender, blood glucose and uric acid levels. In conclusion, our data show that kidney oxygenation is tightly regulated in CKD and hypertensive patients at rest. However, the metabolic response to acute changes in sodium transport is altered in CKD and in AHT, despite preserved renal function in the latter group. This suggests the presence of early renal metabolic alterations in hypertension. The correlations between cortical R2* values, male gender, glycemia and uric acid levels suggest that these factors interfere with the regulation of renal tissue oxygenation.
Resumo:
Congenital pseudomyotonia in Chianina cattle is a muscle function disorder very similar to that of Brody disease in humans. Mutations in the human ATP2A1 gene, encoding SERCA1, cause Brody myopathy. The analysis of the collected Chianina pedigree data suggested monogenic autosomal recessive inheritance and revealed that all 17 affected individuals traced back to a single founder. A deficiency of SERCA1 function in skeletal muscle of pseudomyotonia affected Chianina cattle was observed as SERCA1 activity in affected animals was decreased by about 70%. Linkage analysis showed that the mutation was located in the ATP2A1 gene region on BTA25 and subsequent mutation analysis of the ATP2A1 exons revealed a perfectly associated missense mutation in exon 6 (c.491G>A) leading to a p.Arg164His substitution. Arg164 represents a functionally important and strongly conserved residue of SERCA1. This study provides a suitable large animal model for human Brody disease.