917 resultados para device for counting,


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recirculating charge-coupled device structure has been devised. Entrance and exit gates allow a signal to be admitted, recirculated a given number of times, and then examined. In this way a small device permits simulation of a very long shift register without passing the signal through input and output diffusions. An oscilloscope motion picture demonstrating degradation of an actual circulating signal has been made. The performance of the device in simulating degradation of a signal by a very long shift register is well fit by a simple model based on transfer inefficiency.

Electrical properties of the mercury selenide on n-type chemically-cleaned silicon Schottky barrier have been studied. Barrier heights measured were 0.96 volts for the photoresponse technique and 0.90 volts for the current-voltage technique. These are the highest barriers yet reported on n-type silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the circumstance of a Gaussian control field, the cold atomic medium with electromagnetically induced transparency (EIT) turns out to be the special medium with the quadratic index distribution which is controllable online. In our study, the optical system occupies a portion of the EIT medium which acts as an imaging device. With the help of the Collins formula, the analytic expression for the spatial distribution of the probe field in the cold atomic medium is obtained as well as the location of the imaging. The methods for improving the visibility of the imaging are proposed in this paper. Moreover, we also show that the shapes of the images on the output are strongly influenced by the intensity of the control field, which provides a potential optical processing method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials.

However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures.

We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion.

Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization.

I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain.

The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of a simple method for counting bacteria with active electron transport systems in water and sediment samples. Sodium succinate, NADH and NADPH served as electron donors. It is possible to see several sites of electron transport in the larger cells. Especially impressive are the plankton-algae, protozoa, and small metazoa. This is a partial translation of the ”method” section only.