999 resultados para data mules
Resumo:
Data analysis sessions are a common feature of discourse analytic communities, often involving participants with varying levels of expertise to those with significant expertise. Learning how to do data analysis and working with transcripts, however, are often new experiences for doctoral candidates within the social sciences. While many guides to doctoral education focus on procedures associated with data analysis (Heath, Hindmarsh, & Luff, 2010; McHoul & Rapley, 2001; Silverman, 2011; Wetherall, Taylor, & Yates, 2001), the in situ practices of doing data analysis are relatively undocumented. This chapter has been collaboratively written by members of a special interest research group, the Transcript Analysis Group (TAG), who meet regularly to examine transcripts representing audio- and video-recorded interactional data. Here, we investigate our own actual interactional practices and participation in this group where each member is both analyst and participant. We particularly focus on the pedagogic practices enacted in the group through investigating how members engage in the scholarly practice of data analysis. A key feature of talk within the data sessions is that members work collaboratively to identify and discuss ‘noticings’ from the audio-recorded and transcribed talk being examined, produce candidate analytic observations based on these discussions, and evaluate these observations. Our investigation of how talk constructs social practices in these sessions shows that participants move fluidly between actions that demonstrate pedagogic practices and expertise. Within any one session, members can display their expertise as analysts and, at the same time, display that they have gained an understanding that they did not have before. We take an ethnomethodological position that asks, ‘what’s going on here?’ in the data analysis session. By observing the in situ practices in fine-grained detail, we show how members participate in the data analysis sessions and make sense of a transcript.
Resumo:
The reduction of CO2 emissions and social exclusion are two key elements of UK transport strategy. Despite intensive research on each theme, little effort has so far been made linking the relationship between emissions and social exclusion. In addition, current knowledge on each theme is limited to urban areas; little research is available on these themes for rural areas. This research contributes to this gap in the literature by analysing 157 weekly activity-travel diary data collected from three case study areas with differential levels of area accessibility and area mobility options, located in rural Northern Ireland. Individual weekly CO2 emission levels from personal travel diaries (both hot exhaust emission and cold-start emission) were calculated using average speed models for different modes of transport. The socio-spatial patterns associated with CO2 emissions were identified using a general linear model whereas binary logistic regression analyses were conducted to identify mode choice behaviour and activity patterns. This research found groups that emitted a significantly lower level of CO2 included individuals living in an area with a higher level of accessibility and mobility, non-car, non-working, and low-income older people. However, evidence in this research also shows that although certain groups (e.g. those working, and residing in an area with a lower level of accessibility) emitted higher levels of CO2, their rate of participation in activities was however found to be significantly lower compared to their counterparts. Based on the study findings, this research highlights the need for both soft (e.g. teleworking) and physical (e.g. accessibility planning) policy measures in rural areas in order to meet government’s stated CO2 reduction targets while at the same time enhancing social inclusion.
Resumo:
Background Not all cancer patients receive state-of-the-art care and providing regular feedback to clinicians might reduce this problem. The purpose of this study was to assess the utility of various data sources in providing feedback on the quality of cancer care. Methods Published clinical practice guidelines were used to obtain a list of processes-of-care of interest to clinicians. These were assigned to one of four data categories according to their availability and the marginal cost of using them for feedback. Results Only 8 (3%) of 243 processes-of-care could be measured using population-based registry or administrative inpatient data (lowest cost). A further 119 (49%) could be measured using a core clinical registry, which contains information on important prognostic factors (e.g., clinical stage, physiological reserve, hormone-receptor status). Another 88 (36%) required an expanded clinical registry or medical record review; mainly because they concerned long-term management of disease progression (recurrences and metastases) and 28 (11.5%) required patient interview or audio-taping of consultations because they involved information sharing between clinician and patient. Conclusion The advantages of population-based cancer registries and administrative inpatient data are wide coverage and low cost. The disadvantage is that they currently contain information on only a few processes-of-care. In most jurisdictions, clinical cancer registries, which can be used to report on many more processes-of-care, do not cover smaller hospitals. If we are to provide feedback about all patients, not just those in larger academic hospitals with the most developed data systems, then we need to develop sustainable population-based data systems that capture information on prognostic factors at the time of initial diagnosis and information on management of disease progression.
Resumo:
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exist where the more mind changes the learner is willing to accept, the less the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.
Resumo:
Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures.
Resumo:
Objective: To determine whether primary care management of chronic heart failure (CHF) differed between rural and urban areas in Australia. Design: A cross-sectional survey stratified by Rural, Remote and Metropolitan Areas (RRMA) classification. The primary source of data was the Cardiac Awareness Survey and Evaluation (CASE) study. Setting: Secondary analysis of data obtained from 341 Australian general practitioners and 23 845 adults aged 60 years or more in 1998. Main outcome measures: CHF determined by criteria recommended by the World Health Organization, diagnostic practices, use of pharmacotherapy, and CHF-related hospital admissions in the 12 months before the study. Results: There was a significantly higher prevalence of CHF among general practice patients in large and small rural towns (16.1%) compared with capital city and metropolitan areas (12.4%) (P < 0.001). Echocardiography was used less often for diagnosis in rural towns compared with metropolitan areas (52.0% v 67.3%, P < 0.001). Rates of specialist referral were also significantly lower in rural towns than in metropolitan areas (59.1% v 69.6%, P < 0.001), as were prescribing rates of angiotensin-converting enzyme inhibitors (51.4% v 60.1%, P < 0.001). There was no geographical variation in prescribing rates of β-blockers (12.6% [rural] v 11.8% [metropolitan], P = 0.32). Overall, few survey participants received recommended “evidence-based practice” diagnosis and management for CHF (metropolitan, 4.6%; rural, 3.9%; and remote areas, 3.7%). Conclusions: This study found a higher prevalence of CHF, and significantly lower use of recommended diagnostic methods and pharmacological treatment among patients in rural areas.
Resumo:
Objectives: To quantify the concordance of hospital child maltreatment data with child protection service (CPS) records and identify factors associated with linkage. Methods: Multivariable logistic regression analysis was conducted following retrospective medical record review and database linkage of 884 child records from 20 hospitals and the CPS in Queensland, Australia. Results: Nearly all children with hospital assigned maltreatment codes (93.1%) had a CPS record. Of these, 85.1% had a recent notification. 29% of the linked maltreatment group (n=113) were not known to CPS prior to the hospital presentation. Almost 1/3 of children with unintentional injury hospital codes were known to CPS. Just over 24% of the linked unintentional injury group (n=34) were not known to CPS prior to the hospital presentation but became known during or after discharge from hospital. These estimates are higher than the 2006/07 annual rate of 2.39% of children being notified to CPS. Rural children were more likely to link to CPS, and children were over 3 times more likely to link if the index injury documentation included additional diagnoses or factors affecting their health. Conclusions: The system for referring maltreatment cases to CPS is generally efficient, although up to 1 in 15 children had codes for maltreatment but could not be linked to CPS data. The high proportion of children with unintentional injury codes who linked to CPS suggests clinicians and hospital-based child protection staff should be supported by further education and training to ensure children at risk are being detected by the child protection system.
Resumo:
Data preprocessing is widely recognized as an important stage in anomaly detection. This paper reviews the data preprocessing techniques used by anomaly-based network intrusion detection systems (NIDS), concentrating on which aspects of the network traffic are analyzed, and what feature construction and selection methods have been used. Motivation for the paper comes from the large impact data preprocessing has on the accuracy and capability of anomaly-based NIDS. The review finds that many NIDS limit their view of network traffic to the TCP/IP packet headers. Time-based statistics can be derived from these headers to detect network scans, network worm behavior, and denial of service attacks. A number of other NIDS perform deeper inspection of request packets to detect attacks against network services and network applications. More recent approaches analyze full service responses to detect attacks targeting clients. The review covers a wide range of NIDS, highlighting which classes of attack are detectable by each of these approaches. Data preprocessing is found to predominantly rely on expert domain knowledge for identifying the most relevant parts of network traffic and for constructing the initial candidate set of traffic features. On the other hand, automated methods have been widely used for feature extraction to reduce data dimensionality, and feature selection to find the most relevant subset of features from this candidate set. The review shows a trend toward deeper packet inspection to construct more relevant features through targeted content parsing. These context sensitive features are required to detect current attacks.