997 resultados para damage depth
Resumo:
Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.
Resumo:
In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.
Resumo:
Due to the advent of varied types of masonry systems a comprehensive failure mechanism of masonry essential for the understanding of its behaviour is impossible to be determined from experimental testing. As masonry is predominantly used in wall structures a biaxial stress state dominates its failure mechanism. Biaxial testing will therefore be necessary for each type of masonry, which is expensive and time consuming. A computational method would be advantageous; however masonry is complex to model which requires advanced computational modelling methods. This thesis has formulated a damage mechanics inspired modelling method and has shown that the method effectively determines the failure mechanisms and deformation characteristics of masonry under biaxial states of loading.
Resumo:
Airport runway pavement always subjected to huge impact loading due to the hard landing of aircraft on the pavement surface. Therefore runway pavements should have sufficient impact resistance capability to avoid damage causing by hard impact like surface deflection in downward or penetration since the repair works is cumbersome within the operating condition of airport and also increases the service life cost of the pavement structure. Several research works have been carried out on airport runway pavement to measure the present condition of pavement and also to predict future performance of it. However, most of the works are confined by pavement response under moving aircraft loading. Nevertheless, no comprehensive research work is yet conducted to identify the controlling factors which might have significant effect in changing the common pavements damage like surface penetration depth under impact of aircraft. Therefore, a 3D FE study is conducted to determine some effective factors in controlling the top surface penetration depth of runway pavement. Among the exterior factors, mass of the impactor, velocity of the impactor, impact angle and boundary conditions are selected and as interior factors, thickness of the runway pavement, compressive strength and density of materials used in the runway pavement are selected.
Resumo:
The early and accurate assessment of burns is essential to inform patient treatment regimens; however, this first critical step in clinical practice remains a challenge for specialist burns clinicians worldwide. In this regard, protein biomarkers are a potential adjunct diagnostic tool to assist experienced clinical judgement. Free circulating haemoglobin has previously shown some promise as an indicator of burn depth in a murine animal model. Using blister fluid collected from paediatric burn patients, haemoglobin abundance was measured using semi-quantitative Western blot and immunoassays. Although a trend was observed in which haemoglobin abundance increased with burn wound severity, several patient samples deviated significantly from this trend. Further, it was found that haemoglobin concentration decreased significantly when whole cells, cell debris and fibrinous matrix was removed from the blister fluid by centrifugation; although the relationship to depth was still present. Statistical analyses showed that haemoglobin abundance in the fluid was more strongly related to the time between injury and sample collection and the time taken for spontaneous re-epithelialisation. We hypothesise that prolonged exposure to the blister fluid microenvironment may result in an increased haemoglobin abundance due to erythrocyte lysis, and delayed wound healing
Resumo:
A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.
Resumo:
Y2SiO5 has potential applications as functional-structural ceramic and environmental/thermal barrier coating material. As an important grain-boundary phase in the sintered Si3N4, it also influences the mechanical and dielectric performances of the host material. In this paper, we present the mechanical properties of Y2SiO5 including elastic moduli, hardness, strength and fracture toughness, and try to understand the mechanical features from the viewpoint of crystal structure. Y2SiO5 has low shear modulus, low hardness, as well as high capacity for dispersing mechanical damage energy and for resisting crack penetration. Particularly, it can be machined by cemented carbides tools. The crystal structure characteristics of Y2SiO5 suggest the low-energy weakly bonded atomic planes crossed only by the easily breaking Y-O bonds as well as the rotatable rigid SiO4 tetrahedra are the origins of low shear deformation, good damage tolerance and good machinability of this material. TEM observations also demonstrate that the mechanical damage energy was dispersed in the form of the micro-cleavages, stacking faults and twins along these weakly bonded atomic planes, which allows the "microscale-plasticity" for Y2SiO5.
Resumo:
The paper presents the results of a computational modeling for damage identification process for an axial rod representing an end-bearing pile foundation with known damage and a simply supported beam representing a bridge girder. The paper proposes a methodology for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete axial rod and beam, idealized with distributed damage model. Identification of damage is from Equal_Eigen_value_change (Iso_Eigen_value_Change) contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. An experiment conducted on a free-free axially loaded reinforced concrete member and a flexural beam is shown as examples to prove the pros and cons of this method. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The reduction in natural frequencies,however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamentalmodes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an endbearing pile, modelled as an axial rod and a simply supported plate as a continuum dynamic system. A discrete structure, like a building frame is solved for damage using Eigen-sensitivity derived by a computationalmodel. Lastly, neural network based damage identification is also demonstrated for a simply supported bridge beam, where the known-pairs of damage-frequency vector is used to train a neural network. The performance of these methods under the influence of measurement error is outlined. It is hoped that the developed method could be integrated in a typical infra-structural management program, such that magnitudes of damage and their positions can be obtained using acquired natural frequencies, synthesized from the excited/ambient vibration signatures.
Resumo:
Ductility based design of reinforced concrete structures implicitly assumes certain damage under the action of a design basis earthquake. The damage undergone by a structure needs to be quantified, so as to assess the post-seismic reparability and functionality of the structure. The paper presents an analytical method of quantification and location of seismic damage, through system identification methods. It may be noted that soft ground storied buildings are the major casualties in any earthquake and hence the example structure is a soft or weak first storied one, whose seismic response and temporal variation of damage are computed using a non-linear dynamic analysis program (IDARC) and compared with a normal structure. Time period based damage identification model is used and suitably calibrated with classic damage models. Regenerated stiffness of the three degrees of freedom model (for the three storied frame) is used to locate the damage, both on-line as well as after the seismic event. Multi resolution analysis using wavelets is also used for localized damage identification for soft storey columns.