969 resultados para computational models
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
Les décisions de localisation sont souvent soumises à des aspects dynamiques comme des changements dans la demande des clients. Pour y répondre, la solution consiste à considérer une flexibilité accrue concernant l’emplacement et la capacité des installations. Même lorsque la demande est prévisible, trouver le planning optimal pour le déploiement et l'ajustement dynamique des capacités reste un défi. Dans cette thèse, nous nous concentrons sur des problèmes de localisation avec périodes multiples, et permettant l'ajustement dynamique des capacités, en particulier ceux avec des structures de coûts complexes. Nous étudions ces problèmes sous différents points de vue de recherche opérationnelle, en présentant et en comparant plusieurs modèles de programmation linéaire en nombres entiers (PLNE), l'évaluation de leur utilisation dans la pratique et en développant des algorithmes de résolution efficaces. Cette thèse est divisée en quatre parties. Tout d’abord, nous présentons le contexte industriel à l’origine de nos travaux: une compagnie forestière qui a besoin de localiser des campements pour accueillir les travailleurs forestiers. Nous présentons un modèle PLNE permettant la construction de nouveaux campements, l’extension, le déplacement et la fermeture temporaire partielle des campements existants. Ce modèle utilise des contraintes de capacité particulières, ainsi qu’une structure de coût à économie d’échelle sur plusieurs niveaux. L'utilité du modèle est évaluée par deux études de cas. La deuxième partie introduit le problème dynamique de localisation avec des capacités modulaires généralisées. Le modèle généralise plusieurs problèmes dynamiques de localisation et fournit de meilleures bornes de la relaxation linéaire que leurs formulations spécialisées. Le modèle peut résoudre des problèmes de localisation où les coûts pour les changements de capacité sont définis pour toutes les paires de niveaux de capacité, comme c'est le cas dans le problème industriel mentionnée ci-dessus. Il est appliqué à trois cas particuliers: l'expansion et la réduction des capacités, la fermeture temporaire des installations, et la combinaison des deux. Nous démontrons des relations de dominance entre notre formulation et les modèles existants pour les cas particuliers. Des expériences de calcul sur un grand nombre d’instances générées aléatoirement jusqu’à 100 installations et 1000 clients, montrent que notre modèle peut obtenir des solutions optimales plus rapidement que les formulations spécialisées existantes. Compte tenu de la complexité des modèles précédents pour les grandes instances, la troisième partie de la thèse propose des heuristiques lagrangiennes. Basées sur les méthodes du sous-gradient et des faisceaux, elles trouvent des solutions de bonne qualité même pour les instances de grande taille comportant jusqu’à 250 installations et 1000 clients. Nous améliorons ensuite la qualité de la solution obtenue en résolvent un modèle PLNE restreint qui tire parti des informations recueillies lors de la résolution du dual lagrangien. Les résultats des calculs montrent que les heuristiques donnent rapidement des solutions de bonne qualité, même pour les instances où les solveurs génériques ne trouvent pas de solutions réalisables. Finalement, nous adaptons les heuristiques précédentes pour résoudre le problème industriel. Deux relaxations différentes sont proposées et comparées. Des extensions des concepts précédents sont présentées afin d'assurer une résolution fiable en un temps raisonnable.
Resumo:
La prise de décision est un processus computationnel fondamental dans de nombreux aspects du comportement animal. Le modèle le plus souvent rencontré dans les études portant sur la prise de décision est appelé modèle de diffusion. Depuis longtemps, il explique une grande variété de données comportementales et neurophysiologiques dans ce domaine. Cependant, un autre modèle, le modèle d’urgence, explique tout aussi bien ces mêmes données et ce de façon parcimonieuse et davantage encrée sur la théorie. Dans ce travail, nous aborderons tout d’abord les origines et le développement du modèle de diffusion et nous verrons comment il a été établi en tant que cadre de travail pour l’interprétation de la plupart des données expérimentales liées à la prise de décision. Ce faisant, nous relèveront ses points forts afin de le comparer ensuite de manière objective et rigoureuse à des modèles alternatifs. Nous réexaminerons un nombre d’assomptions implicites et explicites faites par ce modèle et nous mettrons alors l’accent sur certains de ses défauts. Cette analyse servira de cadre à notre introduction et notre discussion du modèle d’urgence. Enfin, nous présenterons une expérience dont la méthodologie permet de dissocier les deux modèles, et dont les résultats illustrent les limites empiriques et théoriques du modèle de diffusion et démontrent en revanche clairement la validité du modèle d'urgence. Nous terminerons en discutant l'apport potentiel du modèle d'urgence pour l'étude de certaines pathologies cérébrales, en mettant l'accent sur de nouvelles perspectives de recherche.
Resumo:
This thesis entitled Reliability Modelling and Analysis in Discrete time Some Concepts and Models Useful in the Analysis of discrete life time data.The present study consists of five chapters. In Chapter II we take up the derivation of some general results useful in reliability modelling that involves two component mixtures. Expression for the failure rate, mean residual life and second moment of residual life of the mixture distributions in terms of the corresponding quantities in the component distributions are investigated. Some applications of these results are also pointed out. The role of the geometric,Waring and negative hypergeometric distributions as models of life lengths in the discrete time domain has been discussed already. While describing various reliability characteristics, it was found that they can be often considered as a class. The applicability of these models in single populations naturally extends to the case of populations composed of sub-populations making mixtures of these distributions worth investigating. Accordingly the general properties, various reliability characteristics and characterizations of these models are discussed in chapter III. Inference of parameters in mixture distribution is usually a difficult problem because the mass function of the mixture is a linear function of the component masses that makes manipulation of the likelihood equations, leastsquare function etc and the resulting computations.very difficult. We show that one of our characterizations help in inferring the parameters of the geometric mixture without involving computational hazards. As mentioned in the review of results in the previous sections, partial moments were not studied extensively in literature especially in the case of discrete distributions. Chapters IV and V deal with descending and ascending partial factorial moments. Apart from studying their properties, we prove characterizations of distributions by functional forms of partial moments and establish recurrence relations between successive moments for some well known families. It is further demonstrated that partial moments are equally efficient and convenient compared to many of the conventional tools to resolve practical problems in reliability modelling and analysis. The study concludes by indicating some new problems that surfaced during the course of the present investigation which could be the subject for a future work in this area.
Resumo:
Software systems are progressively being deployed in many facets of human life. The implication of the failure of such systems, has an assorted impact on its customers. The fundamental aspect that supports a software system, is focus on quality. Reliability describes the ability of the system to function under specified environment for a specified period of time and is used to objectively measure the quality. Evaluation of reliability of a computing system involves computation of hardware and software reliability. Most of the earlier works were given focus on software reliability with no consideration for hardware parts or vice versa. However, a complete estimation of reliability of a computing system requires these two elements to be considered together, and thus demands a combined approach. The present work focuses on this and presents a model for evaluating the reliability of a computing system. The method involves identifying the failure data for hardware components, software components and building a model based on it, to predict the reliability. To develop such a model, focus is given to the systems based on Open Source Software, since there is an increasing trend towards its use and only a few studies were reported on the modeling and measurement of the reliability of such products. The present work includes a thorough study on the role of Free and Open Source Software, evaluation of reliability growth models, and is trying to present an integrated model for the prediction of reliability of a computational system. The developed model has been compared with existing models and its usefulness of is being discussed.
Resumo:
Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.
Resumo:
Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.
Resumo:
Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics.
Resumo:
MOTIVATION: The accurate prediction of the quality of 3D models is a key component of successful protein tertiary structure prediction methods. Currently, clustering or consensus based Model Quality Assessment Programs (MQAPs) are the most accurate methods for predicting 3D model quality; however they are often CPU intensive as they carry out multiple structural alignments in order to compare numerous models. In this study, we describe ModFOLDclustQ - a novel MQAP that compares 3D models of proteins without the need for CPU intensive structural alignments by utilising the Q measure for model comparisons. The ModFOLDclustQ method is benchmarked against the top established methods in terms of both accuracy and speed. In addition, the ModFOLDclustQ scores are combined with those from our older ModFOLDclust method to form a new method, ModFOLDclust2, that aims to provide increased prediction accuracy with negligible computational overhead. RESULTS: The ModFOLDclustQ method is competitive with leading clustering based MQAPs for the prediction of global model quality, yet it is up to 150 times faster than the previous version of the ModFOLDclust method at comparing models of small proteins (<60 residues) and over 5 times faster at comparing models of large proteins (>800 residues). Furthermore, a significant improvement in accuracy can be gained over the previous clustering based MQAPs by combining the scores from ModFOLDclustQ and ModFOLDclust to form the new ModFOLDclust2 method, with little impact on the overall time taken for each prediction. AVAILABILITY: The ModFOLDclustQ and ModFOLDclust2 methods are available to download from: http://www.reading.ac.uk/bioinf/downloads/ CONTACT: l.j.mcguffin@reading.ac.uk.
Resumo:
Physiological evidence using Infrared Video Microscopy during the uncaging of glutamate has proven the existence of excitable calcium ion channels in spine heads, highlighting the need for reliable models of spines. In this study we compare the three main methods of simulating excitable spines: Baer & Rinzel's Continuum (B&R) model, Coombes' Spike-Diffuse-Spike (SDS) model and paired cable and ion channel equations (Cable model). Tests are done to determine how well the models approximate each other in terms of speed and heights of travelling waves. Significant quantitative differences are found between the models: travelling waves in the SDS model in particular are found to travel at much lower speeds and sometimes much higher voltages than in the Cable or B&R models. Meanwhile qualitative differences are found between the B&R and SDS models over realistic parameter ranges. The cause of these differences is investigated and potential solutions proposed.
Resumo:
The question "what Monte Carlo models can do and cannot do efficiently" is discussed for some functional spaces that define the regularity of the input data. Data classes important for practical computations are considered: classes of functions with bounded derivatives and Holder type conditions, as well as Korobov-like spaces. Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of computational complexity of two classes of algorithms - deterministic and randomized for both problems - numerical multidimensional integration and calculation of linear functionals of the solution of a class of integral equations are presented. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
In models of complicated physical-chemical processes operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered weighted splitting schemes have the great advantage of being parallelizable on operator level, which allows us to reduce the computational time if parallel computers are used. In this paper, the computational times needed for the weighted splitting methods are studied in comparison with the sequential (S) splitting and the Marchuk-Strang (MSt) splitting and are illustrated by numerical experiments performed by use of simplified versions of the Danish Eulerian model (DEM).
Resumo:
In order to harness the computational capacity of dissociated cultured neuronal networks, it is necessary to understand neuronal dynamics and connectivity on a mesoscopic scale. To this end, this paper uncovers dynamic spatiotemporal patterns emerging from electrically stimulated neuronal cultures using hidden Markov models (HMMs) to characterize multi-channel spike trains as a progression of patterns of underlying states of neuronal activity. However, experimentation aimed at optimal choice of parameters for such models is essential and results are reported in detail. Results derived from ensemble neuronal data revealed highly repeatable patterns of state transitions in the order of milliseconds in response to probing stimuli.