974 resultados para cold surface layer
Resumo:
By alloying metals with other materials, one can modify the metal’s characteristics or compose an alloy which has certain desired characteristics that no pure metal has. The field is vast and complex, and phenomena that govern the behaviour of alloys are numerous. Theories cannot penetrate such complexity, and the scope of experiments is also limited. This is why the relatively new field of ab initio computational methods has much to give to this field. With these methods, one can extend the understanding given by theories, predict how some systems might behave, and be able to obtain information that is not there to see in physical experiments. This thesis pursues to contribute to the collective knowledge of this field in the light of two cases. The first part examines the oxidation of Ag/Cu, namely, the adsorption dynamics and oxygen induced segregation of the surface. Our results demonstrate that the presence of Ag on the Cu(100) surface layer strongly inhibits dissociative adsorption. Our results also confirmed that surface reconstruction does happen, as experiments predicted. Our studies indicate that 0.25 ML of oxygen is enough for Ag to diffuse towards the bulk, under the copper oxide layer. The other part elucidates the complex interplay of various energy and entropy contributions to the phase stability of paramagnetic duplex steel alloys. We were able to produce a phase stability map from first principles, and it agrees with experiments rather well. Our results also show that entropy contributions play a very important role on defining the phase stability. This is, to the author’s knowledge, the first ab initio study upon this subject.
Resumo:
The work reported in this thesis is dedicated to irreversible magnetic properties in pyrolytic nanocarbon samples. Based on atomic force microscope images, the samples consist of carbon clusters with radius 30..120 nm. These are treated as single-domain nanoparticles. Magnetic hysteresis, field cooled, zero field cooled and thermoremanent magnetization measurements were performed using an RF SQUID magnetometer and ferromagnetic behaviour was observed. Analysis suggests that the ferromagnetic ordering is associated with defects in a thin surface layer, whose thickness is independent of particle size. Critical radius for single-domain particles, critical radius for coherent rotation, magnetic layer thickness, distance between elementary magnetic moments, saturation magnetization, exchange stiffness constant and anisotropy energy density are also presented.
Resumo:
ABSTRACTThis study presents a contribution to the modeling of a computer application employing a method of serviceability performance for unpaved roads, aiming the management of maintenance/restoration activities of the primary surface layer. The proposed methodology consisted of field inspections during dry (April to September) and rainy (October to March) periods, during which objective evaluations were performed to survey of defects and their densities and degrees of severity. To aid the functional classification of analyzed road sections and the determination of the defect with major influence on the serviceability of these roads, the method of serviceability performance proposed by Silva (2009)was implemented in the Visual Basic for Applications (VBA) language in Microsoft Excel software. With the use of the computer application proposed it was possible to identify among the defects analyzed in field, through the index of serviceability of the sampling unit per defect type (ISUdef), which one had the greatest influence on determining the relative serviceability index per road section (IST). The results allow us to conclude that the computer application Road achieved satisfactory results, since the objective evaluation criteria applied to road sections denotes consistency regarding their serviceability.
Resumo:
The utilization of organic wastes represents an alternative to recover degraded pasture. The experiment aimed to assess the changes caused by the provision of different organic waste (poultry litter, turkey litter and pig manure) in a medium-textured Oxisol in Brazilian Savanna under degraded pasture. It was applied different doses of waste compared to the use of mineral fertilizers and organic mineral and evaluated the effect on soil parameters (pH, organic matter, phosphorus and potassium) and leaf of Brachiariadecumbens (crude protein, phosphorus and dry mass production). It was observed that application of organic waste did not increase the level of soil organic matter and pH in the surface layer, and the application of turkey litter caused acidification at depths of 0.20-0.40 m and 0.40-0.60 m. There was an increase in P and K in the soil with the application of poultry litter and swine manure. All organic wastes increased the productivity of dry matter and crude protein and phosphorus. The recycling of nutrients via the application of organic waste allows efficiency of most parameters similar to those observed with the use of mineral sources, contributing to improving the nutritional status of soil-plantsystem.
Resumo:
The study aimed to evaluate a methodology to quantify the porosity of the soil using computed tomography in areas under no-tillage, conventional tillage and native forest. Three soil management systems were selected for the study: forest, conventional tillage and no-tillage. In each soil management system, undisturbed soil samples were collected in the surface layer (0.0 to 0.10 m). The tomographic images were obtained using a X-ray microtomography. After obtaining the images, they were processed, and a methodology was evaluated for image conversion into numerical values. The statistical method which provided the greatest accuracy was the percentile method. The methodology used to analyze the tomographic image allowed quantifying the porosity of the soil under different soil management. The method enabled the characterization of soil porosity in a non-evasive and non-destructive way.
Resumo:
Sulfentrazone leaching potential is dependent on soil properties such as strength and type of clay, organic matter content and pH, and may result in ineffectiveness of the product and contamination of groundwater. The objective of this study was to evaluate sulfentrazone leaching in five soils of the sugarcane region in the Northeast Region of Brazil, with different physical and chemical properties, by means of bioassay and high-performance liquid chromatography (HPLC) resolution. The experiment was conducted in a split plot in a completely randomized design. The plots had PVC columns with a 10 cm diameter and being 50 cm deep, filled with five different soil classes (quartzarenic neosol, haplic cambisol, yellowish-red latosol, yellowish-red acrisol, and haplic gleysol), and subplots for 10 depths in columns, 5 cm intervals. On top of the columns, sulfentrazone application was conducted and 12 hours later there was a simulated rainfall of 60 mm. After 72 hours, the columns were horizontally placed and longitudinally open, divided into sections of 5.0 cm. In the center of each section of the columns, soil samples were collected for chromatographic analyses and sorghum sowing was carried out as an indicator plant. The bioassay method was more sensitive to detect the presence of sulfentrazone in an assessment for chromatography soil, having provided greater herbicide mobility in quartzarenic neosol and yellowish-red latosol, whose presence was detected by the indicator plant to a depth of 45 and 35 cm, respectively. In the other soils, sulfentrazone was detected up to 20 cm deep. The intense mobility of sulfentrazone in quartzarenic neosol may result in herbicide efficiency loss in the soil because the symptoms of intoxication and the amount of herbicide detected via silica were highest between 15 cm and 35 cm depth regarding the soil surface layer (0-10 cm), indicating that sulfentrazone should be avoided in soils with such characteristics.
Resumo:
Several aspects of nutrient cycling were studied at two sites of Atlantic Forest, in São Paulo State, Southeast Brazil (23o46 S; 46o18 W), which exhibited different degrees of forest structure decline caused by the air pollution emitted by the industrial complex of Cubatão, being referred here as the most and least affected sites (MAS and LAS, respectively). These investigations were developed during 1984 - 1986, a period in which the most severe negative effects of air pollution could be observed. Concentrations and amounts of N, P, K, Ca, Mg and S in four ecosystem compartments (leaves, litter layer, soil and roots) and in rainfall, throughfall and litterfall are briefly presented. At each site, the content of mineral elements generally decreased from leaves to litterfall and litter layer on the forest floor. Soil surface layer (0 - 5 cm) in both sites was the richest in mineral elements. Soil fertility was greater at LAS. In general, nutrient amounts remaining in the compartments and cycling through the ecosystem were greater at LAS as well, which could be due to the higher complexity of the forest structure at this site. Rainfall contributed more to soil inputs of K, Ca, Mg and S than litterfall at both sites. The nutrient residence times in the litter layer were higher and the index of nutrient use efficiency was lower at the most affected site. It was concluded that nutrient cycling was disturbed by air pollution at both sites, but to a greater extent at MAS. The main consequences of the air pollution stress were detected in the flux of nutrients through litterfall and in the litter layer on the forest floor.
Resumo:
Les siliciures métalliques constituent un élément crucial des contacts électriques des transistors que l'on retrouve au coeur des circuits intégrés modernes. À mesure qu'on réduit les dimensions de ces derniers apparaissent de graves problèmes de formation, liés par exemple à la limitation des processus par la faible densité de sites de germination. L'objectif de ce projet est d'étudier les mécanismes de synthèse de siliciures métalliques à très petite échelle, en particulier le NiSi, et de déterminer l’effet de l’endommagement du Si par implantation ionique sur la séquence de phase. Nous avons déterminé la séquence de formation des différentes phases du système Ni-Si d’échantillons possédant une couche de Si amorphe sur lesquels étaient déposés 10 nm de Ni. Celle-ci a été obtenue à partir de mesures de diffraction des rayons X résolue en temps et, pour des échantillons trempés à des températures critiques du processus, l’identité des phases et la composition et la microstructure ont été déterminées par mesures de figures de pôle, spectrométrie par rétrodiffusion Rutherford et microscopie électronique en transmission (TEM). Nous avons constaté que pour environ la moitié des échantillons, une réaction survenait spontanément avant le début du recuit thermique, le produit de la réaction étant du Ni2Si hexagonal, une phase instable à température de la pièce, mélangée à du NiSi. Dans de tels échantillons, la température de formation du NiSi, la phase d’intérêt pour la microélectronique, était significativement abaissée.
Resumo:
Le béluga du Saint-Laurent est une espèce menacée au Canada et protégée par la Loi sur les espèces en péril du Canada. La détermination des fonctions biologiques de ses habitats essentiels est nécessaire afin d’assurer le rétablissement de la population. Parcs Canada a entamé en 2009 un suivi des proies du béluga dans deux de ses aires de fréquentation intensive situées dans le Parc marin du Saguenay–Saint-Laurent : l’embouchure de la rivière Saguenay et la baie Sainte-Marguerite. L’étude de l’abondance et de la distribution des proies est réalisée par sondage hydroacoustique le long de transects à l’aide d’un échosondeur multifréquences. Un protocole d’observations systématiques du béluga est mené simultanément aux sondages hydroacoustiques à partir de sites terrestres. Le premier objectif de cette étude est de développer la méthodologie concernant le traitement, la classification et la cartographie des données hydroacoustiques échantillonnées. L’objectif principal consiste à déterminer si l’abondance et la distribution des proies pélagiques ont une influence sur l’utilisation de ces deux habitats par le béluga. La cartographie de la biomasse relative de poissons a été réalisée pour la couche de surface, la couche en profondeur et pour l’ensemble de la colonne d’eau par krigeage ordinaire pour les deux habitats pour les 29 transects. À la baie Sainte-Marguerite, le nombre de bélugas observés augmente avec la biomasse relative des proies en surface et en profondeur. À l’embouchure de la rivière Saguenay, les résultats n’ont pas été concluants. Les résultats suggèrent que l’alimentation pourrait être l’une des fonctions biologiques de la baie Sainte-Marguerite.
Resumo:
Nanosized ZnFe2O4 particles containing traces of a-Fe2O3 by intent were produced by low temperature chemical coprecipitation methods. These particles were subjected to high-energy ball milling. These were then characterised using X-ray diffraction, magnetisation and dielectric studies. The effect of milling on zinc ferrite particles have been studied with a view to ascertaining the anomalous behaviour of these materials in the nanoregime. X-ray diffraction and magnetisation studies carried out show that these particles are associated with strains and it is the surface effects that contribute to the magnetisation. Hematite percentage, probably due to decomposition of zinc ferrite, increases with milling. Dielectric behaviour of these particles is due to interfacial polarisation as proposed by Koops. Also the defects caused by the milling produce traps in the surface layer contributes to dielectric permittivity via spin polarised electron tunnelling between grains. The ionic mechanism is enhanced in dielectrics with the rise in temperature which results in the increase of dielectric permittivity with temperature.
Resumo:
The marine environment is indubitably the largest contiguous habitat on Earth. Because of its vast volume and area, the influence of the world ocean on global climate is profound and plays an important role in human welfare and destiny. The marine environment encompasses several habitats, from the sea surface layer down through the bulk water column, which extends >10,000 meters depth, and further down to the habitats on and under the sea floor. Compared to surface habitats, which have relatively high kinetic energy, deep-ocean circulation is very sluggish. By comparison, life in the deep sea is characterized by a relatively constant physical and chemical environment. Deep water occupying the world ocean basin is a potential natural resource based on its properties such as low temperature, high pressure and relatively unexplored properties. So, a judicious assessment of the marine resources and its management are essential to ensure sustainable development of the country’s ocean resources. Marine sediments are complex environments that are affected by both physiological and biological factors, water movements and burrowing animals. They encompass a large extent of aggregates falling from the surface waters. In aquatic ecosystems, the flux of organic matter to the bottom sediments depend on primary productivity at the ocean surface and water depth. Over 50% of the earth’s surface is covered by deep-sea sediments that are primarily formed through the continual deposition of particles from the productive pelagic waters (Vetriani et al., 1999). These aggregates are regarded as ‘hot spots’ of microbial activity in the ocean (Simon et al., 2002). This represents a good nutritional substrate for heterotrophic bacteria and favours bacterial growth
Resumo:
The magnetic properties of amorphous Fe–Ni–B based metallic glass nanostructures were investigated. The nanostructures underwent a spin-glass transition at temperatures below 100 K and revealed an irreversible temperature following the linear de Almeida–Thouless dependence. When the nanostructures were cooled below 25 K in a magnetic field, they exhibited an exchange bias effect with enhanced coercivity. The observed onset of exchange bias is associated with the coexistence of the spin-glass phase along with the appearance of another spin-glass phase formed by oxidation of the structurally disordered surface layer, displaying a distinct training effect and cooling field dependence. The latter showed a maximum in exchange bias field and coercivity, which is probably due to competing multiple equivalent spin configurations at the boundary between the two spin-glass phases
Resumo:
The classical statistical study of the wind speed in the atmospheric surface layer is made generally from the analysis of the three habitual components that perform the wind data, that is, the component W-E, the component S-N and the vertical component, considering these components independent. When the goal of the study of these data is the Aeolian energy, so is when wind is studied from an energetic point of view and the squares of wind components can be considered as compositional variables. To do so, each component has to be divided by the module of the corresponding vector. In this work the theoretical analysis of the components of the wind as compositional data is presented and also the conclusions that can be obtained from the point of view of the practical applications as well as those that can be derived from the application of this technique in different conditions of weather
Resumo:
Soil moisture content, theta, of a bare and vegetated UK gravelly sandy loam soil (in situ and repacked in small lysimeters) was measured using various dielectric instruments (single-sensor ThetaProbes, multi-sensor Profile Probes, and Aquaflex Sensors), at depths ranging between 0.03 and I m, during the summers of 2001 (in situ soil) and 2002 (mini-lysimeters). Half-hourly values of evaporation, E, were calculated from diurnal changes in total soil profile water content, using the soil water balance equation. For the bare soil field, Profile Probes and ML2x ThetaProbes indicated a diurnal course of theta that did not concur with typical soil physical observations: surface layer soil moisture content increased from early morning until about midday, after which theta declined, generally until the early evening. The unexpected course of theta was positively correlated to soil temperature, T-s, also at deeper depths. Aquaflex and ML1 ThetaProbe (older models) outputs, however, reflected common observations: 0 increased slightly during the night (capillary rise) and decreased from the morning until late afternoon (as a result of evaporation). For the vegetated plot, the spurious diurnal theta fluctuations were less obvious, because canopy shading resulted in lower amplitudes of T-s. The unrealistic theta profiles measured for the bare and vegetated field sites caused diurnal estimates of E to attain downward daytime and upward night-time values. In the mini-lysimeters, at medium to high moisture contents, theta values measured by (ML2x) ThetaProbes followed a relatively realistic course, and predictions of E from diurnal changes in vertically integrated theta generally compared well with lysimeter estimates of E. However, time courses of theta and E became comparable to those observed for the field plots when the soil in the lysimeters reached relatively low values of theta. Attempts to correct measured theta for fluctuations in T, revealed that no generally applicable formula could be derived. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We propose a mechanism to explain suggested links between seismic activity and ionospheric changes detected overhead. Specifically, we explain changes in the natural extremely low-frequency (ELF) radio noise recently observed in the topside ionosphere aboard the DEMETER satellite at night, before major earthquakes. Our mechanism utilises increased electrical conductivity of surface layer air before a major earthquake, which reduces the surface-ionosphere electrical resistance. This increases the vertical fair weather current, and (to maintain continuity of electron flow) lowers the ionosphere. Magnitudes of crucial parameters are estimated and found to be consistent with observations. Natural variability in ionospheric and atmospheric electrical properties is evaluated, and may be overcome using a hybrid detection approach. Suggested experiments to investigate the mechanism involve measuring the cut-off frequency of ELF “tweeks”, the amplitude and phase of very low frequency radio waves in the Earth–ionosphere waveguide, or medium frequency radar, incoherent scatter or rocket studies of the lower ionospheric electron density.